File size: 20,037 Bytes
6a9c9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Different models review a set of requirements and architecture in a mermaid file and then do all the steps of security review. Then we use LLM to  rank them and then merge them into a more complete and accurate threat model\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Start with imports \n",
    "\n",
    "import os\n",
    "import json\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from anthropic import Anthropic\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Always remember to do this!\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
    "groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set (and this is optional)\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set (and this is optional)\")\n",
    "\n",
    "if deepseek_api_key:\n",
    "    print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
    "else:\n",
    "    print(\"DeepSeek API Key not set (and this is optional)\")\n",
    "\n",
    "if groq_api_key:\n",
    "    print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
    "else:\n",
    "    print(\"Groq API Key not set (and this is optional)\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "#This is the prompt which asks the LLM to do a security design review and provides a set of requirements and an architectural diagram in mermaid format\n",
    "designreviewrequest = \"\"\"For the following requirements and architectural diagram, please perform a full security design review which includes the following 7 steps\n",
    "1. Define scope and system boundaries.\n",
    "2. Create detailed data flow diagrams.\n",
    "3. Apply threat frameworks (like STRIDE) to identify threats.\n",
    "4. Rate and prioritize identified threats.\n",
    "5. Document-specific security controls and mitigations.\n",
    "6. Rank the threats based on their severity and likelihood of occurrence.\n",
    "7. Provide a summary of the security review and recommendations.\n",
    "\n",
    "Here are the requirements and mermaid architectural diagram:\n",
    "Software Requirements Specification (SRS) - Juice Shop: Secure E-Commerce Platform\n",
    "This document outlines the functional and non-functional requirements for the Juice Shop, a secure online retail platform.\n",
    "\n",
    "1. Introduction\n",
    "\n",
    "1.1 Purpose: To define the requirements for a robust and secure e-commerce platform that allows customers to purchase products online safely and efficiently.\n",
    "1.2 Scope: The system will be a web-based application providing a full range of e-commerce functionalities, from user registration and product browsing to secure payment processing and order management.\n",
    "1.3 Intended Audience: This document is intended for project managers, developers, quality assurance engineers, and stakeholders involved in the development and maintenance of the Juice Shop platform.\n",
    "2. Overall Description\n",
    "\n",
    "2.1 Product Perspective: A customer-facing, scalable, and secure e-commerce website with a comprehensive administrative backend.\n",
    "2.2 Product Features:\n",
    "Secure user registration and authentication with multi-factor authentication (MFA).\n",
    "A product catalog with detailed descriptions, images, pricing, and stock levels.\n",
    "Advanced search and filtering capabilities for products.\n",
    "A secure shopping cart and checkout process integrating with a trusted payment gateway.\n",
    "User profile management, including order history, shipping addresses, and payment information.\n",
    "An administrative dashboard for managing products, inventory, orders, and customer data.\n",
    "2.3 User Classes and Characteristics:\n",
    "Customer: A registered or guest user who can browse products, make purchases, and manage their account.\n",
    "Administrator: An authorized employee who can manage the platform's content and operations.\n",
    "Customer Service Representative: An authorized employee who can assist customers with orders and account issues.\n",
    "3. System Features\n",
    "\n",
    "3.1 Functional Requirements:\n",
    "User Management:\n",
    "Users shall be able to register for a new account with a unique email address and a strong password.\n",
    "The system shall enforce strong password policies (e.g., length, complexity, and expiration).\n",
    "Users shall be able to log in securely and enable/disable MFA.\n",
    "Users shall be able to reset their password through a secure, token-based process.\n",
    "Product Management:\n",
    "The system shall display products with accurate information, including price, description, and availability.\n",
    "Administrators shall be able to add, update, and remove products from the catalog.\n",
    "Order Processing:\n",
    "The system shall process orders through a secure, PCI-compliant payment gateway.\n",
    "The system shall encrypt all sensitive customer and payment data.\n",
    "Customers shall receive email confirmations for orders and shipping updates.\n",
    "3.2 Non-Functional Requirements:\n",
    "Security:\n",
    "All data transmission shall be encrypted using TLS 1.2 or higher.\n",
    "The system shall be protected against common web vulnerabilities, including the OWASP Top 10 (e.g., SQL Injection, XSS, CSRF).\n",
    "Regular security audits and penetration testing shall be conducted.\n",
    "Performance:\n",
    "The website shall load in under 3 seconds on a standard broadband connection.\n",
    "The system shall handle at least 1,000 concurrent users without significant performance degradation.\n",
    "Reliability: The system shall have an uptime of 99.9% or higher.\n",
    "Usability: The user interface shall be intuitive and easy to navigate for all user types.\n",
    "\n",
    "and here is the mermaid architectural diagram:\n",
    "\n",
    "graph TB\n",
    "    subgraph \"Client Layer\"\n",
    "        Browser[Web Browser]\n",
    "        Mobile[Mobile App]\n",
    "    end\n",
    "    \n",
    "    subgraph \"Frontend Layer\"\n",
    "        Angular[Angular SPA Frontend]\n",
    "        Static[Static Assets<br/>CSS, JS, Images]\n",
    "    end\n",
    "    \n",
    "    subgraph \"Application Layer\"\n",
    "        Express[Express.js Server]\n",
    "        Routes[REST API Routes]\n",
    "        Auth[Authentication Module]\n",
    "        Middleware[Security Middleware]\n",
    "        Challenges[Challenge Engine]\n",
    "    end\n",
    "    \n",
    "    subgraph \"Business Logic\"\n",
    "        UserMgmt[User Management]\n",
    "        ProductCatalog[Product Catalog]\n",
    "        OrderSystem[Order System]\n",
    "        Feedback[Feedback System]\n",
    "        FileUpload[File Upload Handler]\n",
    "        Payment[Payment Processing]\n",
    "    end\n",
    "    \n",
    "    subgraph \"Data Layer\"\n",
    "        SQLite[(SQLite Database)]\n",
    "        FileSystem[File System<br/>Uploaded Files]\n",
    "        Memory[In-Memory Storage<br/>Sessions, Cache]\n",
    "    end\n",
    "    \n",
    "    subgraph \"Security Features (Intentionally Vulnerable)\"\n",
    "        XSS[DOM Manipulation]\n",
    "        SQLi[Database Queries]\n",
    "        AuthBypass[Login System]\n",
    "        CSRF[State Changes]\n",
    "        Crypto[Password Hashing]\n",
    "        IDOR[Resource Access]\n",
    "    end\n",
    "    \n",
    "    subgraph \"External Dependencies\"\n",
    "        NPM[NPM Packages]\n",
    "        JWT[JWT Libraries]\n",
    "        Crypto[Crypto Libraries]\n",
    "        Sequelize[Sequelize ORM]\n",
    "    end\n",
    "    \n",
    "    %% Client connections\n",
    "    Browser --> Angular\n",
    "    Mobile --> Routes\n",
    "    \n",
    "    %% Frontend connections\n",
    "    Angular --> Static\n",
    "    Angular --> Routes\n",
    "    \n",
    "    %% Application layer connections\n",
    "    Express --> Routes\n",
    "    Routes --> Auth\n",
    "    Routes --> Middleware\n",
    "    Routes --> Challenges\n",
    "    \n",
    "    %% Business logic connections\n",
    "    Routes --> UserMgmt\n",
    "    Routes --> ProductCatalog\n",
    "    Routes --> OrderSystem\n",
    "    Routes --> Feedback\n",
    "    Routes --> FileUpload\n",
    "    Routes --> Payment\n",
    "    \n",
    "    %% Data layer connections\n",
    "    UserMgmt --> SQLite\n",
    "    ProductCatalog --> SQLite\n",
    "    OrderSystem --> SQLite\n",
    "    Feedback --> SQLite\n",
    "    FileUpload --> FileSystem\n",
    "    Auth --> Memory\n",
    "    \n",
    "    %% Security vulnerabilities (dotted lines indicate vulnerable paths)\n",
    "    Angular -.-> XSS\n",
    "    Routes -.-> SQLi\n",
    "    Auth -.-> AuthBypass\n",
    "    Angular -.-> CSRF\n",
    "    UserMgmt -.-> Crypto\n",
    "    Routes -.-> IDOR\n",
    "    \n",
    "    %% External dependencies\n",
    "    Express --> NPM\n",
    "    Auth --> JWT\n",
    "    UserMgmt --> Crypto\n",
    "    SQLite --> Sequelize\n",
    "    \n",
    "    %% Styling\n",
    "    classDef clientLayer fill:#e1f5fe\n",
    "    classDef frontendLayer fill:#f3e5f5\n",
    "    classDef appLayer fill:#e8f5e8\n",
    "    classDef businessLayer fill:#fff3e0\n",
    "    classDef dataLayer fill:#fce4ec\n",
    "    classDef securityLayer fill:#ffebee\n",
    "    classDef externalLayer fill:#f1f8e9\n",
    "    \n",
    "    class Browser,Mobile clientLayer\n",
    "    class Angular,Static frontendLayer\n",
    "    class Express,Routes,Auth,Middleware,Challenges appLayer\n",
    "    class UserMgmt,ProductCatalog,OrderSystem,Feedback,FileUpload,Payment businessLayer\n",
    "    class SQLite,FileSystem,Memory dataLayer\n",
    "    class XSS,SQLi,AuthBypass,CSRF,Crypto,IDOR securityLayer\n",
    "    class NPM,JWT,Crypto,Sequelize externalLayer\"\"\"\n",
    "\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": designreviewrequest}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "messages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai = OpenAI()\n",
    "competitors = []\n",
    "answers = []"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# We make the first call to the first model\n",
    "model_name = \"gpt-4o-mini\"\n",
    "\n",
    "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Anthropic has a slightly different API, and Max Tokens is required\n",
    "\n",
    "model_name = \"claude-3-7-sonnet-latest\"\n",
    "\n",
    "claude = Anthropic()\n",
    "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
    "answer = response.content[0].text\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
    "model_name = \"gemini-2.0-flash\"\n",
    "\n",
    "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
    "model_name = \"deepseek-chat\"\n",
    "\n",
    "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
    "model_name = \"llama-3.3-70b-versatile\"\n",
    "\n",
    "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!ollama pull llama3.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
    "model_name = \"llama3.2\"\n",
    "\n",
    "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
    "answer = response.choices[0].message.content\n",
    "\n",
    "display(Markdown(answer))\n",
    "competitors.append(model_name)\n",
    "answers.append(answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# So where are we?\n",
    "\n",
    "print(competitors)\n",
    "print(answers)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# It's nice to know how to use \"zip\"\n",
    "for competitor, answer in zip(competitors, answers):\n",
    "    print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's bring this together - note the use of \"enumerate\"\n",
    "\n",
    "together = \"\"\n",
    "for index, answer in enumerate(answers):\n",
    "    together += f\"# Response from competitor {index+1}\\n\\n\"\n",
    "    together += answer + \"\\n\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(together)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Now we are going to ask the model to rank the design reviews\n",
    "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
    "Each model has been given this question:\n",
    "\n",
    "{designreviewrequest}\n",
    "\n",
    "Your job is to evaluate each response for completeness and accuracy, and rank them in order of best to worst.\n",
    "Respond with JSON, and only JSON, with the following format:\n",
    "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
    "\n",
    "Here are the responses from each competitor:\n",
    "\n",
    "{together}\n",
    "\n",
    "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(judge)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Judgement time!\n",
    "\n",
    "openai = OpenAI()\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"o3-mini\",\n",
    "    messages=judge_messages,\n",
    ")\n",
    "results = response.choices[0].message.content\n",
    "print(results)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# OK let's turn this into results!\n",
    "\n",
    "results_dict = json.loads(results)\n",
    "ranks = results_dict[\"results\"]\n",
    "for index, result in enumerate(ranks):\n",
    "    competitor = competitors[int(result)-1]\n",
    "    print(f\"Rank {index+1}: {competitor}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Now we have all the design reviews, let's see if LLMs can merge them into a single design review that is more complete and accurate than the individual reviews.\n",
    "mergePrompt = f\"\"\"Here are design reviews from {len(competitors)} LLms. Here are the responses from each one:\n",
    "\n",
    "{together} Your task is to synthesize these reviews into a single, comprehensive design review and threat model that:\n",
    "\n",
    "1. **Includes all identified threats**, consolidating any duplicates with unified wording.\n",
    "2. **Preserves the strongest insights** from each review, especially nuanced or unique observations.\n",
    "3. **Highlights conflicting or divergent findings**, if any, and explains which interpretation seems more likely and why.\n",
    "4. **Organizes the final output** in a clear format, with these sections:\n",
    "   - Scope and System Boundaries\n",
    "   - Data Flow Overview\n",
    "   - Identified Threats (categorized using STRIDE or equivalent)\n",
    "   - Risk Ratings and Prioritization\n",
    "   - Suggested Mitigations\n",
    "   - Final Comments and Open Questions\n",
    "\n",
    "Be concise but thorough. Treat this as a final report for a real-world security audit.\n",
    "\"\"\"\n",
    "\n",
    "\n",
    "openai = OpenAI()\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4o-mini\",\n",
    "    messages=[{\"role\": \"user\", \"content\": mergePrompt}],\n",
    ")\n",
    "results = response.choices[0].message.content\n",
    "print(results)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}