Spaces:
Sleeping
Sleeping
File size: 20,037 Bytes
6a9c9f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Different models review a set of requirements and architecture in a mermaid file and then do all the steps of security review. Then we use LLM to rank them and then merge them into a more complete and accurate threat model\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Start with imports \n",
"\n",
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from anthropic import Anthropic\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Always remember to do this!\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Print the key prefixes to help with any debugging\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set (and this is optional)\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
"else:\n",
" print(\"Google API Key not set (and this is optional)\")\n",
"\n",
"if deepseek_api_key:\n",
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
"else:\n",
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
"\n",
"if groq_api_key:\n",
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
"else:\n",
" print(\"Groq API Key not set (and this is optional)\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"\n",
"#This is the prompt which asks the LLM to do a security design review and provides a set of requirements and an architectural diagram in mermaid format\n",
"designreviewrequest = \"\"\"For the following requirements and architectural diagram, please perform a full security design review which includes the following 7 steps\n",
"1. Define scope and system boundaries.\n",
"2. Create detailed data flow diagrams.\n",
"3. Apply threat frameworks (like STRIDE) to identify threats.\n",
"4. Rate and prioritize identified threats.\n",
"5. Document-specific security controls and mitigations.\n",
"6. Rank the threats based on their severity and likelihood of occurrence.\n",
"7. Provide a summary of the security review and recommendations.\n",
"\n",
"Here are the requirements and mermaid architectural diagram:\n",
"Software Requirements Specification (SRS) - Juice Shop: Secure E-Commerce Platform\n",
"This document outlines the functional and non-functional requirements for the Juice Shop, a secure online retail platform.\n",
"\n",
"1. Introduction\n",
"\n",
"1.1 Purpose: To define the requirements for a robust and secure e-commerce platform that allows customers to purchase products online safely and efficiently.\n",
"1.2 Scope: The system will be a web-based application providing a full range of e-commerce functionalities, from user registration and product browsing to secure payment processing and order management.\n",
"1.3 Intended Audience: This document is intended for project managers, developers, quality assurance engineers, and stakeholders involved in the development and maintenance of the Juice Shop platform.\n",
"2. Overall Description\n",
"\n",
"2.1 Product Perspective: A customer-facing, scalable, and secure e-commerce website with a comprehensive administrative backend.\n",
"2.2 Product Features:\n",
"Secure user registration and authentication with multi-factor authentication (MFA).\n",
"A product catalog with detailed descriptions, images, pricing, and stock levels.\n",
"Advanced search and filtering capabilities for products.\n",
"A secure shopping cart and checkout process integrating with a trusted payment gateway.\n",
"User profile management, including order history, shipping addresses, and payment information.\n",
"An administrative dashboard for managing products, inventory, orders, and customer data.\n",
"2.3 User Classes and Characteristics:\n",
"Customer: A registered or guest user who can browse products, make purchases, and manage their account.\n",
"Administrator: An authorized employee who can manage the platform's content and operations.\n",
"Customer Service Representative: An authorized employee who can assist customers with orders and account issues.\n",
"3. System Features\n",
"\n",
"3.1 Functional Requirements:\n",
"User Management:\n",
"Users shall be able to register for a new account with a unique email address and a strong password.\n",
"The system shall enforce strong password policies (e.g., length, complexity, and expiration).\n",
"Users shall be able to log in securely and enable/disable MFA.\n",
"Users shall be able to reset their password through a secure, token-based process.\n",
"Product Management:\n",
"The system shall display products with accurate information, including price, description, and availability.\n",
"Administrators shall be able to add, update, and remove products from the catalog.\n",
"Order Processing:\n",
"The system shall process orders through a secure, PCI-compliant payment gateway.\n",
"The system shall encrypt all sensitive customer and payment data.\n",
"Customers shall receive email confirmations for orders and shipping updates.\n",
"3.2 Non-Functional Requirements:\n",
"Security:\n",
"All data transmission shall be encrypted using TLS 1.2 or higher.\n",
"The system shall be protected against common web vulnerabilities, including the OWASP Top 10 (e.g., SQL Injection, XSS, CSRF).\n",
"Regular security audits and penetration testing shall be conducted.\n",
"Performance:\n",
"The website shall load in under 3 seconds on a standard broadband connection.\n",
"The system shall handle at least 1,000 concurrent users without significant performance degradation.\n",
"Reliability: The system shall have an uptime of 99.9% or higher.\n",
"Usability: The user interface shall be intuitive and easy to navigate for all user types.\n",
"\n",
"and here is the mermaid architectural diagram:\n",
"\n",
"graph TB\n",
" subgraph \"Client Layer\"\n",
" Browser[Web Browser]\n",
" Mobile[Mobile App]\n",
" end\n",
" \n",
" subgraph \"Frontend Layer\"\n",
" Angular[Angular SPA Frontend]\n",
" Static[Static Assets<br/>CSS, JS, Images]\n",
" end\n",
" \n",
" subgraph \"Application Layer\"\n",
" Express[Express.js Server]\n",
" Routes[REST API Routes]\n",
" Auth[Authentication Module]\n",
" Middleware[Security Middleware]\n",
" Challenges[Challenge Engine]\n",
" end\n",
" \n",
" subgraph \"Business Logic\"\n",
" UserMgmt[User Management]\n",
" ProductCatalog[Product Catalog]\n",
" OrderSystem[Order System]\n",
" Feedback[Feedback System]\n",
" FileUpload[File Upload Handler]\n",
" Payment[Payment Processing]\n",
" end\n",
" \n",
" subgraph \"Data Layer\"\n",
" SQLite[(SQLite Database)]\n",
" FileSystem[File System<br/>Uploaded Files]\n",
" Memory[In-Memory Storage<br/>Sessions, Cache]\n",
" end\n",
" \n",
" subgraph \"Security Features (Intentionally Vulnerable)\"\n",
" XSS[DOM Manipulation]\n",
" SQLi[Database Queries]\n",
" AuthBypass[Login System]\n",
" CSRF[State Changes]\n",
" Crypto[Password Hashing]\n",
" IDOR[Resource Access]\n",
" end\n",
" \n",
" subgraph \"External Dependencies\"\n",
" NPM[NPM Packages]\n",
" JWT[JWT Libraries]\n",
" Crypto[Crypto Libraries]\n",
" Sequelize[Sequelize ORM]\n",
" end\n",
" \n",
" %% Client connections\n",
" Browser --> Angular\n",
" Mobile --> Routes\n",
" \n",
" %% Frontend connections\n",
" Angular --> Static\n",
" Angular --> Routes\n",
" \n",
" %% Application layer connections\n",
" Express --> Routes\n",
" Routes --> Auth\n",
" Routes --> Middleware\n",
" Routes --> Challenges\n",
" \n",
" %% Business logic connections\n",
" Routes --> UserMgmt\n",
" Routes --> ProductCatalog\n",
" Routes --> OrderSystem\n",
" Routes --> Feedback\n",
" Routes --> FileUpload\n",
" Routes --> Payment\n",
" \n",
" %% Data layer connections\n",
" UserMgmt --> SQLite\n",
" ProductCatalog --> SQLite\n",
" OrderSystem --> SQLite\n",
" Feedback --> SQLite\n",
" FileUpload --> FileSystem\n",
" Auth --> Memory\n",
" \n",
" %% Security vulnerabilities (dotted lines indicate vulnerable paths)\n",
" Angular -.-> XSS\n",
" Routes -.-> SQLi\n",
" Auth -.-> AuthBypass\n",
" Angular -.-> CSRF\n",
" UserMgmt -.-> Crypto\n",
" Routes -.-> IDOR\n",
" \n",
" %% External dependencies\n",
" Express --> NPM\n",
" Auth --> JWT\n",
" UserMgmt --> Crypto\n",
" SQLite --> Sequelize\n",
" \n",
" %% Styling\n",
" classDef clientLayer fill:#e1f5fe\n",
" classDef frontendLayer fill:#f3e5f5\n",
" classDef appLayer fill:#e8f5e8\n",
" classDef businessLayer fill:#fff3e0\n",
" classDef dataLayer fill:#fce4ec\n",
" classDef securityLayer fill:#ffebee\n",
" classDef externalLayer fill:#f1f8e9\n",
" \n",
" class Browser,Mobile clientLayer\n",
" class Angular,Static frontendLayer\n",
" class Express,Routes,Auth,Middleware,Challenges appLayer\n",
" class UserMgmt,ProductCatalog,OrderSystem,Feedback,FileUpload,Payment businessLayer\n",
" class SQLite,FileSystem,Memory dataLayer\n",
" class XSS,SQLi,AuthBypass,CSRF,Crypto,IDOR securityLayer\n",
" class NPM,JWT,Crypto,Sequelize externalLayer\"\"\"\n",
"\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": designreviewrequest}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"messages"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()\n",
"competitors = []\n",
"answers = []"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We make the first call to the first model\n",
"model_name = \"gpt-4o-mini\"\n",
"\n",
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Anthropic has a slightly different API, and Max Tokens is required\n",
"\n",
"model_name = \"claude-3-7-sonnet-latest\"\n",
"\n",
"claude = Anthropic()\n",
"response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
"answer = response.content[0].text\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
"model_name = \"gemini-2.0-flash\"\n",
"\n",
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
"model_name = \"deepseek-chat\"\n",
"\n",
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
"model_name = \"llama-3.3-70b-versatile\"\n",
"\n",
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
"model_name = \"llama3.2\"\n",
"\n",
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# So where are we?\n",
"\n",
"print(competitors)\n",
"print(answers)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# It's nice to know how to use \"zip\"\n",
"for competitor, answer in zip(competitors, answers):\n",
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# Let's bring this together - note the use of \"enumerate\"\n",
"\n",
"together = \"\"\n",
"for index, answer in enumerate(answers):\n",
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
" together += answer + \"\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(together)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"#Now we are going to ask the model to rank the design reviews\n",
"judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
"Each model has been given this question:\n",
"\n",
"{designreviewrequest}\n",
"\n",
"Your job is to evaluate each response for completeness and accuracy, and rank them in order of best to worst.\n",
"Respond with JSON, and only JSON, with the following format:\n",
"{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
"\n",
"Here are the responses from each competitor:\n",
"\n",
"{together}\n",
"\n",
"Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(judge)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"judge_messages = [{\"role\": \"user\", \"content\": judge}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Judgement time!\n",
"\n",
"openai = OpenAI()\n",
"response = openai.chat.completions.create(\n",
" model=\"o3-mini\",\n",
" messages=judge_messages,\n",
")\n",
"results = response.choices[0].message.content\n",
"print(results)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# OK let's turn this into results!\n",
"\n",
"results_dict = json.loads(results)\n",
"ranks = results_dict[\"results\"]\n",
"for index, result in enumerate(ranks):\n",
" competitor = competitors[int(result)-1]\n",
" print(f\"Rank {index+1}: {competitor}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Now we have all the design reviews, let's see if LLMs can merge them into a single design review that is more complete and accurate than the individual reviews.\n",
"mergePrompt = f\"\"\"Here are design reviews from {len(competitors)} LLms. Here are the responses from each one:\n",
"\n",
"{together} Your task is to synthesize these reviews into a single, comprehensive design review and threat model that:\n",
"\n",
"1. **Includes all identified threats**, consolidating any duplicates with unified wording.\n",
"2. **Preserves the strongest insights** from each review, especially nuanced or unique observations.\n",
"3. **Highlights conflicting or divergent findings**, if any, and explains which interpretation seems more likely and why.\n",
"4. **Organizes the final output** in a clear format, with these sections:\n",
" - Scope and System Boundaries\n",
" - Data Flow Overview\n",
" - Identified Threats (categorized using STRIDE or equivalent)\n",
" - Risk Ratings and Prioritization\n",
" - Suggested Mitigations\n",
" - Final Comments and Open Questions\n",
"\n",
"Be concise but thorough. Treat this as a final report for a real-world security audit.\n",
"\"\"\"\n",
"\n",
"\n",
"openai = OpenAI()\n",
"response = openai.chat.completions.create(\n",
" model=\"gpt-4o-mini\",\n",
" messages=[{\"role\": \"user\", \"content\": mergePrompt}],\n",
")\n",
"results = response.choices[0].message.content\n",
"print(results)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|