|
import spaces |
|
import torch |
|
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline |
|
from diffusers.utils import export_to_video |
|
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTextModel, CLIPImageProcessor |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
import tempfile |
|
import re |
|
import os |
|
import traceback |
|
from huggingface_hub import list_repo_files |
|
from huggingface_hub import hf_hub_download |
|
import numpy as np |
|
from PIL import Image |
|
import gradio as gr |
|
import random |
|
|
|
|
|
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" |
|
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX" |
|
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors" |
|
|
|
|
|
I2V_LORA_REPO_ID = "DeepBeepMeep/Wan2.1" |
|
I2V_LORA_SUBFOLDER = "loras_i2v" |
|
|
|
|
|
print("π Loading I2V pipeline from single file...") |
|
i2v_pipe = None |
|
try: |
|
|
|
i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) |
|
i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32) |
|
i2v_text_encoder = UMT5EncoderModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16) |
|
i2v_tokenizer = AutoTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer") |
|
i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor") |
|
|
|
|
|
scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler") |
|
scheduler_config['flow_shift'] = 8.0 |
|
i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config) |
|
|
|
|
|
i2v_transformer = WanTransformer3DModel.from_single_file( |
|
"https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX.safetensors", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
|
|
i2v_pipe = WanImageToVideoPipeline( |
|
vae=i2v_vae, |
|
text_encoder=i2v_text_encoder, |
|
tokenizer=i2v_tokenizer, |
|
image_encoder=i2v_image_encoder, |
|
image_processor=i2v_image_processor, |
|
scheduler=i2v_scheduler, |
|
transformer=i2v_transformer |
|
) |
|
i2v_pipe.to("cuda") |
|
print("β
I2V pipeline loaded successfully from single file.") |
|
except Exception as e: |
|
print(f"β Critical Error: Failed to load I2V pipeline from single file.") |
|
traceback.print_exc() |
|
|
|
|
|
def get_available_loras(repo_id, subfolder): |
|
"""Fetches the list of available LoRA files from a Hugging Face Hub repo subfolder.""" |
|
try: |
|
files = list_repo_files(repo_id=repo_id, repo_type='model', subfolder=subfolder) |
|
|
|
safetensors_files = [f.split('/')[-1] for f in files if f.endswith('.safetensors')] |
|
print(f"β
Discovered {len(safetensors_files)} LoRAs in {repo_id}/{subfolder}") |
|
return ["None"] + sorted(safetensors_files) |
|
except Exception as e: |
|
print(f"β οΈ Warning: Could not fetch LoRAs from {repo_id}. LoRA selection will be disabled. Error: {e}") |
|
return ["None"] |
|
|
|
available_i2v_loras = get_available_loras(I2V_LORA_REPO_ID, I2V_LORA_SUBFOLDER) if i2v_pipe else ["None"] |
|
|
|
|
|
|
|
MOD_VALUE = 8 |
|
DEFAULT_H_SLIDER_VALUE = 512 |
|
DEFAULT_W_SLIDER_VALUE = 768 |
|
NEW_FORMULA_MAX_AREA = 768.0 * 512.0 |
|
|
|
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896 |
|
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
FIXED_FPS = 16 |
|
T2V_FIXED_FPS = 16 |
|
MIN_FRAMES_MODEL = 8 |
|
MAX_FRAMES_MODEL = 81 |
|
|
|
|
|
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography" |
|
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards" |
|
|
|
|
|
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str: |
|
"""Sanitizes a prompt string to be used as a valid filename.""" |
|
if not prompt: |
|
prompt = "video" |
|
sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip() |
|
sanitized = re.sub(r'[\s_-]+', '_', sanitized) |
|
return sanitized[:max_len] |
|
|
|
def update_linked_dimension(driving_value, other_value, aspect_ratio, mod_val, mode): |
|
"""Updates a dimension slider based on the other, maintaining aspect ratio.""" |
|
|
|
if aspect_ratio is None or aspect_ratio == 0: |
|
return gr.update() |
|
|
|
if mode == 'h_drives_w': |
|
|
|
new_other_value = driving_value * aspect_ratio |
|
else: |
|
|
|
new_other_value = driving_value / aspect_ratio |
|
|
|
|
|
new_other_value = max(mod_val, (round(new_other_value / mod_val)) * mod_val) |
|
|
|
|
|
return gr.update(value=new_other_value) if int(new_other_value) != int(other_value) else gr.update() |
|
|
|
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, |
|
min_slider_h, max_slider_h, |
|
min_slider_w, max_slider_w, |
|
default_h, default_w): |
|
orig_w, orig_h = pil_image.size |
|
if orig_w <= 0 or orig_h <= 0: |
|
return default_h, default_w |
|
aspect_ratio = orig_h / orig_w |
|
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) |
|
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) |
|
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) |
|
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) |
|
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) |
|
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) |
|
return new_h, new_w |
|
|
|
def handle_image_upload_for_dims_wan(uploaded_pil_image): |
|
default_aspect = DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE |
|
if uploaded_pil_image is None: |
|
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect |
|
try: |
|
|
|
new_h, new_w = _calculate_new_dimensions_wan( |
|
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, |
|
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, |
|
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE |
|
) |
|
|
|
|
|
orig_w, orig_h = uploaded_pil_image.size |
|
aspect_ratio = orig_w / orig_h if orig_h > 0 else default_aspect |
|
|
|
return gr.update(value=new_h), gr.update(value=new_w), aspect_ratio |
|
except Exception as e: |
|
gr.Warning("Error calculating new dimensions. Resetting to default.") |
|
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE), default_aspect |
|
|
|
|
|
def get_i2v_duration(steps, duration_seconds): |
|
"""Estimates GPU time for Image-to-Video generation.""" |
|
if steps > 8 and duration_seconds > 3: return 600 |
|
elif steps > 8 or duration_seconds > 3: return 300 |
|
else: return 150 |
|
|
|
def get_t2v_duration(steps, duration_seconds): |
|
"""Estimates GPU time for Text-to-Video generation.""" |
|
if steps > 15 and duration_seconds > 4: return 700 |
|
elif steps > 15 or duration_seconds > 4: return 400 |
|
else: return 200 |
|
|
|
|
|
|
|
@spaces.GPU(duration_from_args=get_i2v_duration) |
|
def generate_i2v_video(input_image, prompt, height, width, |
|
negative_prompt, duration_seconds, |
|
guidance_scale, steps, seed, randomize_seed, |
|
lora_name, lora_weight, |
|
progress=gr.Progress(track_tqdm=True)): |
|
"""Generates a video from an initial image and a prompt.""" |
|
if input_image is None: |
|
raise gr.Error("Please upload an input image for Image-to-Video generation.") |
|
if i2v_pipe is None: |
|
raise gr.Error("Image-to-Video pipeline is not available due to a loading error.") |
|
|
|
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) |
|
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) |
|
|
|
|
|
target_frames = int(round(duration_seconds * FIXED_FPS)) |
|
adjusted_frames = 4 * round((target_frames - 1) / 4) + 1 |
|
num_frames = int(np.clip(adjusted_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)) |
|
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) |
|
resized_image = input_image.resize((target_w, target_h)) |
|
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting" |
|
|
|
adapter_name = "i2v_lora" |
|
try: |
|
|
|
if lora_name and lora_name != "None": |
|
print(f"π Loading LoRA: {lora_name} with weight {lora_weight}") |
|
i2v_pipe.load_lora_weights( |
|
I2V_LORA_REPO_ID, |
|
weight_name=lora_name, |
|
adapter_name=adapter_name, |
|
subfolder=I2V_LORA_SUBFOLDER |
|
) |
|
i2v_pipe.set_adapters([adapter_name], adapter_weights=[float(lora_weight)]) |
|
|
|
with torch.inference_mode(): |
|
output_frames_list = i2v_pipe( |
|
image=resized_image, |
|
prompt=enhanced_prompt, |
|
negative_prompt=negative_prompt, |
|
height=target_h, |
|
width=target_w, |
|
num_frames=num_frames, |
|
guidance_scale=float(guidance_scale), |
|
num_inference_steps=int(steps), |
|
generator=torch.Generator(device="cuda").manual_seed(current_seed) |
|
).frames[0] |
|
finally: |
|
|
|
if lora_name and lora_name != "None" and hasattr(i2v_pipe, "unload_lora_weights"): |
|
print(f"π§Ή Unloading LoRA: {lora_name}") |
|
i2v_pipe.unload_lora_weights() |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
sanitized_prompt = sanitize_prompt_for_filename(prompt) |
|
filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4" |
|
temp_dir = tempfile.mkdtemp() |
|
video_path = os.path.join(temp_dir, filename) |
|
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) |
|
|
|
return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"π₯ Download: {filename}") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(elem_classes=["main-container"]): |
|
i2v_aspect_ratio = gr.State(value=DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE) |
|
gr.Markdown("# β‘ FusionX Enhanced Wan 2.1 Video Suite") |
|
|
|
with gr.Tabs(elem_classes=["gr-tabs"]): |
|
|
|
with gr.TabItem("πΌοΈ Image-to-Video", id="i2v_tab"): |
|
with gr.Row(): |
|
with gr.Column(elem_classes=["input-container"]): |
|
i2v_input_image = gr.Image( |
|
type="pil", |
|
label="πΌοΈ Input Image (auto-resizes H/W sliders)", |
|
elem_classes=["image-upload"] |
|
) |
|
i2v_prompt = gr.Textbox( |
|
label="βοΈ Prompt", |
|
value=default_prompt_i2v, lines=3 |
|
) |
|
i2v_duration = gr.Slider( |
|
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), |
|
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), |
|
step=0.1, value=2, label="β±οΈ Duration (seconds)", |
|
info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." |
|
) |
|
with gr.Accordion("βοΈ Advanced Settings", open=False): |
|
i2v_neg_prompt = gr.Textbox(label="β Negative Prompt", value=default_negative_prompt, lines=4) |
|
i2v_seed = gr.Slider(label="π² Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) |
|
i2v_rand_seed = gr.Checkbox(label="π Randomize seed", value=True, interactive=True) |
|
i2v_lora_name = gr.Dropdown(label="π¨ LoRA Style", choices=available_i2v_loras, value="None", info="Dynamically loaded from Hugging Face.", interactive=len(available_i2v_loras) > 1) |
|
i2v_lora_weight = gr.Slider(label="πͺ LoRA Weight", minimum=0.0, maximum=2.0, step=0.1, value=0.8, interactive=True) |
|
with gr.Row(): |
|
i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"π Height ({MOD_VALUE}px steps)") |
|
i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"π Width ({MOD_VALUE}px steps)") |
|
gr.Markdown("<p style='color: #ffcc00; font-size: 0.9em;'>β οΈ High resolutions can lead to out-of-memory errors. If generation fails, try a smaller size.</p>") |
|
i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="π Inference Steps", info="8-10 recommended for great results.") |
|
i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="π― Guidance Scale", visible=False) |
|
|
|
i2v_generate_btn = gr.Button("π¬ Generate I2V", variant="primary", elem_classes=["generate-btn"]) |
|
|
|
with gr.Column(elem_classes=["output-container"]): |
|
i2v_output_video = gr.Video(label="π₯ Generated Video", autoplay=True, interactive=False) |
|
i2v_download = gr.File(label="π₯ Download Video", visible=False) |
|
|
|
|
|
|
|
|
|
|
|
i2v_input_image.upload( |
|
fn=handle_image_upload_for_dims_wan, |
|
inputs=[i2v_input_image], |
|
outputs=[i2v_height, i2v_width, i2v_aspect_ratio] |
|
) |
|
i2v_input_image.clear( |
|
fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE / DEFAULT_H_SLIDER_VALUE), |
|
inputs=[], |
|
outputs=[i2v_height, i2v_width, i2v_aspect_ratio] |
|
) |
|
i2v_generate_btn.click( |
|
fn=generate_i2v_video, |
|
inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed, i2v_lora_name, i2v_lora_weight], |
|
outputs=[i2v_output_video, i2v_seed, i2v_download] |
|
) |
|
i2v_height.release( |
|
fn=update_linked_dimension, |
|
inputs=[i2v_height, i2v_width, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('h_drives_w')], |
|
outputs=[i2v_width] |
|
) |
|
i2v_width.release( |
|
fn=update_linked_dimension, |
|
inputs=[i2v_width, i2v_height, i2v_aspect_ratio, gr.State(MOD_VALUE), gr.State('w_drives_h')], |
|
outputs=[i2v_height] |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |