File size: 16,106 Bytes
cac97c2
b75bad3
cac97c2
 
eb19008
 
 
 
 
cac97c2
b75bad3
cac97c2
 
 
 
 
 
eb19008
cac97c2
 
 
 
b75bad3
eb19008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac97c2
 
 
 
eb19008
cac97c2
eb19008
 
cac97c2
eb19008
cac97c2
eb19008
 
cac97c2
 
eb19008
cac97c2
 
eb19008
 
 
 
 
 
 
 
cac97c2
 
eb19008
cac97c2
eb19008
 
cac97c2
 
 
eb19008
 
cac97c2
eb19008
cac97c2
 
eb19008
 
 
cac97c2
 
eb19008
 
cac97c2
eb19008
 
 
 
 
 
 
 
 
 
 
 
cac97c2
eb19008
cac97c2
 
eb19008
 
cac97c2
 
 
eb19008
 
cac97c2
eb19008
 
 
 
 
cac97c2
eb19008
 
 
 
 
 
 
 
 
 
 
 
cac97c2
eb19008
 
 
 
 
 
 
 
 
cac97c2
eb19008
 
 
 
 
 
 
 
 
 
 
cac97c2
eb19008
 
 
 
 
 
 
cac97c2
 
 
 
 
eb19008
 
 
 
 
 
 
 
cac97c2
 
eb19008
 
 
 
 
 
cac97c2
eb19008
 
cac97c2
 
 
eb19008
 
 
cac97c2
 
 
 
 
eb19008
cac97c2
eb19008
 
cac97c2
 
eb19008
 
 
 
cac97c2
eb19008
 
 
 
 
 
 
cac97c2
eb19008
 
cac97c2
eb19008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75bad3
cac97c2
eb19008
 
 
 
 
 
 
 
cac97c2
eb19008
 
 
cac97c2
eb19008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75bad3
 
cac97c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env python3

import os
import warnings
from collections.abc import Iterator
from threading import Thread
from typing import List, Dict, Optional, Tuple
import time

warnings.filterwarnings("ignore")

# Try to import required libraries
try:
    import torch
    from transformers import (
        AutoModelForCausalLM, 
        AutoTokenizer, 
        TextIteratorStreamer
    )
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False

try:
    import gradio as gr
    GRADIO_AVAILABLE = True
except ImportError:
    GRADIO_AVAILABLE = False

class CPULLMChat:
    def __init__(self):
        self.models = {
            "microsoft/DialoGPT-medium": "DialoGPT Medium (Recommended for chat)",
            "microsoft/DialoGPT-small": "DialoGPT Small (Faster)",
            "distilgpt2": "DistilGPT2 (Very fast)",
            "gpt2": "GPT2 (Standard)",
            "facebook/blenderbot-400M-distill": "BlenderBot (Conversational)"
        }
        
        self.current_model = None
        self.current_tokenizer = None
        self.current_model_name = None
        self.model_loaded = False
        
        # Configuration
        self.max_input_length = 2048
        self.device = "cpu"
        
    def load_model(self, model_name: str, progress=gr.Progress()) -> str:
        """Load the selected model"""
        if not TRANSFORMERS_AVAILABLE:
            return "❌ Error: transformers library not installed. Run: pip install torch transformers"
        
        if model_name == self.current_model_name and self.model_loaded:
            return f"βœ… Model {model_name} is already loaded!"
        
        try:
            progress(0.1, desc="Loading tokenizer...")
            
            # Load tokenizer
            self.current_tokenizer = AutoTokenizer.from_pretrained(
                model_name, 
                padding_side="left"
            )
            if self.current_tokenizer.pad_token is None:
                self.current_tokenizer.pad_token = self.current_tokenizer.eos_token
            
            progress(0.5, desc="Loading model...")
            
            # Load model with CPU optimizations
            self.current_model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float32,  # Use float32 for CPU
                device_map={"": self.device},
                low_cpu_mem_usage=True
            )
            
            # Set to evaluation mode
            self.current_model.eval()
            
            self.current_model_name = model_name
            self.model_loaded = True
            
            progress(1.0, desc="Model loaded successfully!")
            
            return f"βœ… Successfully loaded: {model_name}"
            
        except Exception as e:
            self.model_loaded = False
            return f"❌ Failed to load model {model_name}: {str(e)}"
    
    def generate_response(
        self,
        message: str,
        chat_history: List[List[str]],
        max_new_tokens: int = 256,
        temperature: float = 0.7,
        top_p: float = 0.9,
        top_k: int = 50,
        repetition_penalty: float = 1.1,
    ) -> Iterator[str]:
        """Generate response with streaming"""
        
        if not self.model_loaded:
            yield "❌ Please load a model first!"
            return
        
        if not message.strip():
            yield "Please enter a message."
            return
        
        try:
            # Prepare conversation context
            conversation_text = ""
            
            # Add chat history (last 5 exchanges to manage memory)
            recent_history = chat_history[-5:] if len(chat_history) > 5 else chat_history
            
            if "DialoGPT" in self.current_model_name:
                # For DialoGPT, format as conversation
                chat_history_ids = None
                
                # Build conversation from history
                for user_msg, bot_msg in recent_history:
                    if user_msg:
                        user_input_ids = self.current_tokenizer.encode(
                            user_msg + self.current_tokenizer.eos_token,
                            return_tensors='pt'
                        )
                        if chat_history_ids is not None:
                            chat_history_ids = torch.cat([chat_history_ids, user_input_ids], dim=-1)
                        else:
                            chat_history_ids = user_input_ids
                    
                    if bot_msg:
                        bot_input_ids = self.current_tokenizer.encode(
                            bot_msg + self.current_tokenizer.eos_token,
                            return_tensors='pt'
                        )
                        if chat_history_ids is not None:
                            chat_history_ids = torch.cat([chat_history_ids, bot_input_ids], dim=-1)
                        else:
                            chat_history_ids = bot_input_ids
                
                # Add current message
                new_user_input_ids = self.current_tokenizer.encode(
                    message + self.current_tokenizer.eos_token,
                    return_tensors='pt'
                )
                
                if chat_history_ids is not None:
                    input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
                else:
                    input_ids = new_user_input_ids
            
            else:
                # For other models, create context from history
                for user_msg, bot_msg in recent_history:
                    if user_msg and bot_msg:
                        conversation_text += f"User: {user_msg}\nAssistant: {bot_msg}\n"
                
                conversation_text += f"User: {message}\nAssistant:"
                input_ids = self.current_tokenizer.encode(conversation_text, return_tensors='pt')
            
            # Limit input length
            if input_ids.shape[1] > self.max_input_length:
                input_ids = input_ids[:, -self.max_input_length:]
            
            # Set up streaming
            streamer = TextIteratorStreamer(
                self.current_tokenizer,
                timeout=60.0,
                skip_prompt=True,
                skip_special_tokens=True
            )
            
            generation_kwargs = {
                'input_ids': input_ids,
                'streamer': streamer,
                'max_new_tokens': max_new_tokens,
                'temperature': temperature,
                'top_p': top_p,
                'top_k': top_k,
                'repetition_penalty': repetition_penalty,
                'do_sample': True,
                'pad_token_id': self.current_tokenizer.pad_token_id,
                'eos_token_id': self.current_tokenizer.eos_token_id,
                'no_repeat_ngram_size': 2,
            }
            
            # Start generation in separate thread
            generation_thread = Thread(
                target=self.current_model.generate,
                kwargs=generation_kwargs
            )
            generation_thread.start()
            
            # Stream the response
            partial_response = ""
            for new_text in streamer:
                partial_response += new_text
                yield partial_response
            
        except Exception as e:
            yield f"❌ Generation error: {str(e)}"

def create_interface():
    """Create the Gradio interface"""
    
    if not GRADIO_AVAILABLE:
        print("❌ Error: gradio library not installed. Run: pip install gradio")
        return None
    
    if not TRANSFORMERS_AVAILABLE:
        print("❌ Error: transformers library not installed. Run: pip install torch transformers")
        return None
    
    # Initialize the chat system
    chat_system = CPULLMChat()
    
    # Custom CSS for better styling
    css = """
    .gradio-container {
        max-width: 1200px;
        margin: auto;
    }
    .chat-message {
        padding: 10px;
        margin: 5px 0;
        border-radius: 10px;
    }
    .user-message {
        background-color: #e3f2fd;
        margin-left: 20%;
    }
    .bot-message {
        background-color: #f1f8e9;
        margin-right: 20%;
    }
    """
    
    with gr.Blocks(css=css, title="CPU LLM Chat") as demo:
        gr.Markdown("# πŸ€– CPU-Optimized LLM Chat")
        gr.Markdown("*A lightweight chat interface for running language models on CPU*")
        
        with gr.Row():
            with gr.Column(scale=2):
                model_dropdown = gr.Dropdown(
                    choices=list(chat_system.models.keys()),
                    value="microsoft/DialoGPT-medium",
                    label="Select Model",
                    info="Choose a model to load. DialoGPT models work best for chat."
                )
                load_btn = gr.Button("πŸ”„ Load Model", variant="primary")
                model_status = gr.Textbox(
                    label="Model Status",
                    value="No model loaded",
                    interactive=False
                )
            
            with gr.Column(scale=1):
                gr.Markdown("### πŸ’‘ Model Info")
                gr.Markdown("""
                - **DialoGPT Medium**: Best quality, slower
                - **DialoGPT Small**: Good balance
                - **DistilGPT2**: Fastest option
                - **GPT2**: General purpose
                - **BlenderBot**: Conversational AI
                """)
        
        # Chat interface
        chatbot = gr.Chatbot(
            label="Chat History",
            height=400,
            show_label=True,
            container=True
        )
        
        with gr.Row():
            msg = gr.Textbox(
                label="Your Message",
                placeholder="Type your message here... (Press Ctrl+Enter to send)",
                lines=3,
                max_lines=10,
                show_label=False
            )
            send_btn = gr.Button("πŸ“€ Send", variant="primary")
        
        # Parameters section
        with gr.Accordion("βš™οΈ Generation Parameters", open=False):
            with gr.Row():
                max_tokens = gr.Slider(
                    minimum=50,
                    maximum=512,
                    value=256,
                    step=10,
                    label="Max New Tokens",
                    info="Maximum number of tokens to generate"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature",
                    info="Higher values = more creative, lower = more focused"
                )
            
            with gr.Row():
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.05,
                    label="Top-p",
                    info="Nucleus sampling parameter"
                )
                top_k = gr.Slider(
                    minimum=1,
                    maximum=100,
                    value=50,
                    step=1,
                    label="Top-k",
                    info="Top-k sampling parameter"
                )
                repetition_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=2.0,
                    value=1.1,
                    step=0.05,
                    label="Repetition Penalty",
                    info="Penalty for repeating tokens"
                )
        
        # Example messages
        with gr.Accordion("πŸ’¬ Example Messages", open=False):
            examples = [
                "Hello! How are you today?",
                "Tell me a short story about a robot.",
                "What's the difference between AI and machine learning?",
                "Can you help me write a poem about nature?",
                "Explain quantum computing in simple terms.",
            ]
            
            example_buttons = []
            for example in examples:
                btn = gr.Button(example, variant="secondary")
                example_buttons.append(btn)
        
        # Clear chat button
        clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
        
        # Event handlers
        def respond(message, history, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
            if not chat_system.model_loaded:
                history.append([message, "❌ Please load a model first!"])
                return history, ""
            
            history.append([message, ""])
            
            for partial_response in chat_system.generate_response(
                message, history, max_new_tokens, temperature, top_p, top_k, repetition_penalty
            ):
                history[-1][1] = partial_response
                yield history, ""
        
        def load_model_handler(model_name, progress=gr.Progress()):
            return chat_system.load_model(model_name, progress)
        
        def set_example(example_text):
            return example_text
        
        def clear_chat():
            return [], ""
        
        # Wire up events
        load_btn.click(load_model_handler, inputs=[model_dropdown], outputs=[model_status])
        
        msg.submit(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, msg])
        send_btn.click(respond, inputs=[msg, chatbot, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, msg])
        
        clear_btn.click(clear_chat, outputs=[chatbot, msg])
        
        # Example buttons
        for btn, example in zip(example_buttons, examples):
            btn.click(set_example, inputs=[gr.State(example)], outputs=[msg])
        
        # Footer
        gr.Markdown("""
        ---
        ### πŸ“‹ Instructions:
        1. **Select and load a model** using the dropdown and "Load Model" button
        2. **Wait for the model to load** (may take 1-2 minutes on first load)
        3. **Start chatting** once you see "βœ… Successfully loaded" message
        4. **Adjust parameters** if needed for different response styles
        
        ### πŸ’» System Requirements:
        - CPU with at least 4GB RAM available
        - Python 3.8+ with torch and transformers installed
        
        ### ⚑ Performance Tips:
        - Use DialoGPT-small for fastest responses
        - Keep max tokens under 300 for better speed
        - Lower temperature (0.3-0.7) for more consistent responses
        """)
    
    return demo

def main():
    """Main function to run the application"""
    
    print("===== CPU LLM Chat Application =====")
    print("Checking dependencies...")
    
    if not GRADIO_AVAILABLE:
        print("❌ Gradio not found. Install with: pip install gradio")
        return
    
    if not TRANSFORMERS_AVAILABLE:
        print("❌ Transformers not found. Install with: pip install torch transformers")
        return
    
    print("βœ… All dependencies found!")
    print("Starting web interface...")
    
    try:
        demo = create_interface()
        if demo:
            # Launch with appropriate settings
            demo.queue(max_size=10).launch(
                server_name="0.0.0.0",  # Allow external access
                server_port=7860,       # Default Gradio port
                share=False,            # Set to True if you want a public link
                show_error=True,
                show_tips=True,
                inbrowser=False         # Don't try to open browser in headless env
            )
    except KeyboardInterrupt:
        print("\nπŸ‘‹ Application stopped by user")
    except Exception as e:
        print(f"❌ Error starting application: {e}")

if __name__ == "__main__":
    main()