File size: 1,738 Bytes
fafa7b0
aad84fe
 
a702cfd
aad84fe
2436221
20d5756
2436221
20d5756
 
 
981d40d
2436221
 
 
 
 
 
 
a702cfd
 
 
 
981d40d
a702cfd
981d40d
2436221
 
20d5756
 
 
 
 
 
 
 
981d40d
 
20d5756
a702cfd
981d40d
 
a702cfd
981d40d
 
aad84fe
20d5756
 
e827c31
20d5756
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from fastapi import FastAPI, Request
from sentence_transformers import SentenceTransformer, util
import torch
import requests

SUPABASE_URL = "https://olbjfxlclotxtnpjvpfj.supabase.co"
SUPABASE_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Im9sYmpmeGxjbG90eHRucGp2cGZqIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NTIyMzYwMDEsImV4cCI6MjA2NzgxMjAwMX0.7q_o5DCFEAAysnWXMChH4MI5qNhIVc4OgpT5JvgYxc0"  # isi dengan key kamu

model = SentenceTransformer("all-MiniLM-L6-v2")

app = FastAPI()

def get_faq_from_supabase(uid):
    url = f"{SUPABASE_URL}/rest/v1/faq_texts?uid=eq.{uid}"
    headers = {
        "apikey": SUPABASE_KEY,
        "Authorization": f"Bearer {SUPABASE_KEY}",
        "Content-Type": "application/json"
    }
    try:
        r = requests.get(url, headers=headers)
        r.raise_for_status()
        data = r.json()
        return [{"q": d["question"], "a": d["answer"]} for d in data]
    except Exception as e:
        print("❌ Supabase error:", e)
        return []

@app.post("/predict")
async def predict(request: Request):
    body = await request.json()
    uid, question = body.get("data", [None, None])
    
    if not uid or not question:
        return {"data": ["UID atau pertanyaan tidak valid."]}
    
    faqs = get_faq_from_supabase(uid)
    if not faqs:
        return {"data": ["FAQ tidak ditemukan untuk UID ini."]}

    questions = [f["q"] for f in faqs]
    answers = [f["a"] for f in faqs]

    embeddings = model.encode(questions, convert_to_tensor=True)
    query_embedding = model.encode(question, convert_to_tensor=True)

    similarity = util.pytorch_cos_sim(query_embedding, embeddings)
    best_idx = torch.argmax(similarity).item()

    return {"data": [answers[best_idx]]}