Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI, Request | |
from sentence_transformers import SentenceTransformer, util | |
import torch | |
import requests | |
# π‘οΈ Pastikan cache bisa ditulis | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf" | |
# π Supabase config | |
SUPABASE_URL = "https://olbjfxlclotxtnpjvpfj.supabase.co" | |
SUPABASE_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..." | |
# π Load model sekali | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
# π FastAPI app | |
app = FastAPI() | |
# π½ Ambil data FAQ dari Supabase | |
def get_faq_from_supabase(uid): | |
url = f"{SUPABASE_URL}/rest/v1/faq_texts?uid=eq.{uid}" | |
headers = { | |
"apikey": SUPABASE_KEY, | |
"Authorization": f"Bearer {SUPABASE_KEY}", | |
"Content-Type": "application/json" | |
} | |
try: | |
r = requests.get(url, headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return [{"q": d["question"], "a": d["answer"]} for d in data] | |
except Exception as e: | |
print("β Supabase error:", e) | |
return [] | |
async def predict(request: Request): | |
body = await request.json() | |
uid, question = body.get("data", [None, None]) | |
if not uid or not question: | |
return {"data": ["UID atau pertanyaan tidak valid."]} | |
faqs = get_faq_from_supabase(uid) | |
if not faqs: | |
return {"data": ["FAQ tidak ditemukan untuk UID ini."]} | |
questions = [f["q"] for f in faqs] | |
answers = [f["a"] for f in faqs] | |
embeddings = model.encode(questions, convert_to_tensor=True) | |
query_embedding = model.encode(question, convert_to_tensor=True) | |
similarity = util.pytorch_cos_sim(query_embedding, embeddings) | |
best_idx = torch.argmax(similarity).item() | |
return {"data": [answers[best_idx]]} |