Spaces:
Sleeping
Sleeping
import os from fastapi import FastAPI, Request from sentence_transformers import SentenceTransformer, util import torch import requests | |
β Pastikan cache model tersimpan di lokasi yang bisa ditulis | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf" os.makedirs("/tmp/hf", exist_ok=True) | |
π Supabase config | |
SUPABASE_URL = "https://olbjfxlclotxtnpjvpfj.supabase.co" SUPABASE_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Im9sYmpmeGxjbG90eHRucGp2cGZqIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NTIyMzYwMDEsImV4cCI6MjA2NzgxMjAwMX0.7q_o5DCFEAAysnWXMChH4MI5qNhIVc4OgpT5JvgYxc0" | |
β Load model (gunakan versi lebih kecil untuk pengujian) | |
model = SentenceTransformer("paraphrase-MiniLM-L3-v2") | |
π FastAPI app | |
app = FastAPI() | |
def get_faq_from_supabase(uid): url = f"{SUPABASE_URL}/rest/v1/faq_texts?uid=eq.{uid}" headers = { "apikey": SUPABASE_KEY, "Authorization": f"Bearer {SUPABASE_KEY}", "Content-Type": "application/json" } try: r = requests.get(url, headers=headers) r.raise_for_status() data = r.json() return [{"q": d["question"], "a": d["answer"]} for d in data] except Exception as e: print("β Supabase error:", e) return [] | |
if not uid or not question: | |
return {"data": ["UID atau pertanyaan tidak valid."]} | |
faqs = get_faq_from_supabase(uid) | |
if not faqs: | |
return {"data": ["FAQ tidak ditemukan untuk UID ini."]} | |
questions = [f["q"] for f in faqs] | |
answers = [f["a"] for f in faqs] | |
embeddings = model.encode(questions, convert_to_tensor=True) | |
query_embedding = model.encode(question, convert_to_tensor=True) | |
similarity = util.pytorch_cos_sim(query_embedding, embeddings) | |
best_idx = torch.argmax(similarity).item() | |
return {"data": [answers[best_idx]]} | |
except Exception as e: | |
print("β Error processing request:", e) | |
return {"data": ["Terjadi kesalahan pada server."]} |