Ogghey's picture
Update app.py
fafa7b0 verified
raw
history blame
2.29 kB
import gradio as gr
from fastapi import FastAPI, Request
import uvicorn
from sentence_transformers import SentenceTransformer, util
import torch
import requests
import threading
# πŸ” Supabase setup
SUPABASE_URL = "https://olbjfxlclotxtnpjvpfj.supabase.co"
SUPABASE_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Im9sYmpmeGxjbG90eHRucGp2cGZqIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NTIyMzYwMDEsImV4cCI6MjA2NzgxMjAwMX0.7q_o5DCFEAAysnWXMChH4MI5qNhIVc4OgpT5JvgYxc0"
model = SentenceTransformer('all-MiniLM-L6-v2')
def get_faq_from_supabase(uid):
url = f"{SUPABASE_URL}/rest/v1/faq_texts?uid=eq.{uid}"
headers = {
"apikey": SUPABASE_KEY,
"Authorization": f"Bearer {SUPABASE_KEY}",
"Content-Type": "application/json"
}
try:
r = requests.get(url, headers=headers)
r.raise_for_status()
data = r.json()
return [{"q": d["question"], "a": d["answer"]} for d in data]
except Exception as e:
print("❌ Supabase error:", e)
return []
def chatbot(uid, question):
faqs = get_faq_from_supabase(uid)
if not faqs:
return "Tidak ada data FAQ."
questions = [f["q"] for f in faqs]
answers = [f["a"] for f in faqs]
embeddings = model.encode(questions, convert_to_tensor=True)
query_embedding = model.encode(question, convert_to_tensor=True)
scores = util.pytorch_cos_sim(query_embedding, embeddings)
best_idx = torch.argmax(scores).item()
return answers[best_idx]
# 🌐 FastAPI app
app = FastAPI()
@app.post("/predict")
async def predict(request: Request):
payload = await request.json()
uid, question = payload.get("data", [None, None])
if not uid or not question:
return {"error": "UID dan pertanyaan diperlukan."}
answer = chatbot(uid, question)
return {"data": [answer]}
# 🌈 Gradio UI (opsional)
def launch_gradio():
demo = gr.Interface(
fn=chatbot,
inputs=["text", "text"],
outputs="text",
title="Biruu Chatbot",
examples=[["uid123", "Apakah bisa bayar di tempat?"]],
allow_flagging="never"
)
demo.launch(share=True)
# ▢️ Jalankan Gradio di thread terpisah agar tidak bentrok dengan FastAPI
threading.Thread(target=launch_gradio).start()