Spaces:
Runtime error
Runtime error
Commit
·
25ef180
1
Parent(s):
06f6199
options/Video_model/Model.py
CHANGED
|
@@ -1,26 +1,29 @@
|
|
| 1 |
-
|
| 2 |
-
import torch,os
|
| 3 |
-
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
-
from diffusers.utils import load_image
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
| 6 |
from .tdd_svd_scheduler import TDDSVDStochasticIterativeScheduler
|
| 7 |
from .utils import load_lora_weights, save_video
|
| 8 |
-
from typing import Optional
|
| 9 |
from glob import glob
|
|
|
|
| 10 |
|
|
|
|
| 11 |
svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
|
| 12 |
lora_repo_path = 'RED-AIGC/TDD'
|
| 13 |
lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
def Video(
|
| 25 |
image: Image,
|
| 26 |
seed: Optional[int] = 1,
|
|
@@ -36,30 +39,36 @@ def Video(
|
|
| 36 |
motion_bucket_id: int = 127,
|
| 37 |
output_folder: str = "outputs_gradio",
|
| 38 |
):
|
|
|
|
| 39 |
pipeline.scheduler.set_eta(eta)
|
| 40 |
|
|
|
|
| 41 |
if randomize_seed:
|
| 42 |
-
seed = random.randint(0,
|
| 43 |
generator = torch.manual_seed(seed)
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
os.makedirs(output_folder, exist_ok=True)
|
| 47 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 48 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
frames = pipeline(
|
| 53 |
-
image, height
|
| 54 |
-
num_inference_steps
|
| 55 |
-
min_guidance_scale
|
| 56 |
-
max_guidance_scale
|
| 57 |
-
num_frames
|
| 58 |
-
decode_chunk_size
|
| 59 |
-
noise_aug_strength
|
| 60 |
-
generator
|
| 61 |
).frames[0]
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
torch.manual_seed(seed)
|
| 64 |
|
| 65 |
-
return video_path, seed
|
|
|
|
| 1 |
+
import torch
|
|
|
|
|
|
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
+
import os
|
| 4 |
+
from diffusers import StableVideoDiffusionPipeline
|
| 5 |
from .tdd_svd_scheduler import TDDSVDStochasticIterativeScheduler
|
| 6 |
from .utils import load_lora_weights, save_video
|
|
|
|
| 7 |
from glob import glob
|
| 8 |
+
from typing import Optional
|
| 9 |
|
| 10 |
+
# Define paths and device
|
| 11 |
svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
|
| 12 |
lora_repo_path = 'RED-AIGC/TDD'
|
| 13 |
lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
+
# Initialize the noise scheduler and pipeline
|
| 17 |
+
noise_scheduler = TDDSVDStochasticIterativeScheduler(
|
| 18 |
+
num_train_timesteps=250, sigma_min=0.002, sigma_max=700.0,
|
| 19 |
+
sigma_data=1.0, s_noise=1.0, rho=7, clip_denoised=False
|
| 20 |
+
)
|
| 21 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 22 |
+
svd_path, scheduler=noise_scheduler, torch_dtype=torch.float16, variant="fp16"
|
| 23 |
+
).to(device)
|
| 24 |
+
load_lora_weights(pipeline.unet, lora_repo_path, weight_name=lora_weight_name)
|
| 25 |
|
| 26 |
+
# Video function definition
|
| 27 |
def Video(
|
| 28 |
image: Image,
|
| 29 |
seed: Optional[int] = 1,
|
|
|
|
| 39 |
motion_bucket_id: int = 127,
|
| 40 |
output_folder: str = "outputs_gradio",
|
| 41 |
):
|
| 42 |
+
# Set the eta value in the scheduler
|
| 43 |
pipeline.scheduler.set_eta(eta)
|
| 44 |
|
| 45 |
+
# Handle seed randomness
|
| 46 |
if randomize_seed:
|
| 47 |
+
seed = random.randint(0, 2**64 - 1)
|
| 48 |
generator = torch.manual_seed(seed)
|
| 49 |
+
|
| 50 |
+
# Ensure the image is converted to a format that the model can use
|
| 51 |
+
image = Image.fromarray(image)
|
| 52 |
os.makedirs(output_folder, exist_ok=True)
|
| 53 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 54 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
|
|
| 55 |
|
| 56 |
+
# Use float32 for image processing to avoid BFloat16 errors
|
| 57 |
+
image = image.convert("RGB") # Ensure image is in RGB format
|
| 58 |
+
with torch.autocast(device, dtype=torch.float32):
|
| 59 |
frames = pipeline(
|
| 60 |
+
image, height=height, width=width,
|
| 61 |
+
num_inference_steps=num_inference_steps,
|
| 62 |
+
min_guidance_scale=min_guidance_scale,
|
| 63 |
+
max_guidance_scale=max_guidance_scale,
|
| 64 |
+
num_frames=num_frames, fps=fps, motion_bucket_id=motion_bucket_id,
|
| 65 |
+
decode_chunk_size=8,
|
| 66 |
+
noise_aug_strength=0.02,
|
| 67 |
+
generator=generator,
|
| 68 |
).frames[0]
|
| 69 |
+
|
| 70 |
+
# Save the generated video
|
| 71 |
+
save_video(frames, video_path, fps=fps, quality=5.0)
|
| 72 |
torch.manual_seed(seed)
|
| 73 |
|
| 74 |
+
return video_path, seed
|
options/Video_model/__pycache__/Model.cpython-310.pyc
CHANGED
|
Binary files a/options/Video_model/__pycache__/Model.cpython-310.pyc and b/options/Video_model/__pycache__/Model.cpython-310.pyc differ
|
|
|