Spaces:
Sleeping
Sleeping
| import json | |
| import os | |
| from pinecone import Pinecone, ServerlessSpec | |
| import numpy as np | |
| from openai import OpenAI | |
| # Load environment variables | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| # Get API keys from environment variables | |
| PINECONE_API_KEY = os.getenv('PINECONE_API_KEY') | |
| OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
| if not PINECONE_API_KEY: | |
| raise ValueError("PINECONE_API_KEY environment variable not set") | |
| if not OPENAI_API_KEY: | |
| raise ValueError("OPENAI_API_KEY environment variable not set") | |
| # Initialize OpenAI client | |
| openai_client = OpenAI(api_key=OPENAI_API_KEY) | |
| # Define the embedding model using OpenAI | |
| class OpenAIEmbedder: | |
| def __init__(self, model_name="text-embedding-3-small"): | |
| self.model_name = model_name | |
| self.client = openai_client | |
| self.embedding_dimension = 1536 # Dimension of text-embedding-3-small | |
| def encode(self, texts): | |
| if isinstance(texts, str): | |
| texts = [texts] | |
| # Get embeddings from OpenAI | |
| response = self.client.embeddings.create( | |
| input=texts, | |
| model=self.model_name | |
| ) | |
| # Extract embeddings from response | |
| embeddings = [item.embedding for item in response.data] | |
| return np.array(embeddings) | |
| # Initialize Pinecone client | |
| def initialize_pinecone(): | |
| pc = Pinecone(api_key=PINECONE_API_KEY) | |
| # Define index name | |
| index_name = "ebikes-search" | |
| # Check if index already exists | |
| existing_indexes = pc.list_indexes().names() | |
| if index_name not in existing_indexes: | |
| # Create index with 1536 dimensions (matches text-embedding-3-small) | |
| pc.create_index( | |
| name=index_name, | |
| dimension=1536, | |
| metric="cosine", | |
| spec=ServerlessSpec(cloud="aws", region="us-west-2") | |
| ) | |
| print(f"Created new index: {index_name}") | |
| # Connect to the index | |
| index = pc.Index(index_name) | |
| return index | |
| # Load the e-bikes data | |
| def load_ebikes_data(file_path="data.json"): | |
| with open(file_path, 'r') as f: | |
| data = json.load(f) | |
| return data.get('pogo-cycles-data', []) | |
| # Create embeddings and upload to Pinecone | |
| def create_and_upload_embeddings(ebikes_data, encoder, pinecone_index): | |
| # Prepare data for indexing | |
| ids = [] | |
| descriptions = [] | |
| metadata = [] | |
| for bike in ebikes_data: | |
| ids.append(bike['id']) | |
| descriptions.append(bike['description']) | |
| metadata.append({ | |
| "id": bike["id"], | |
| "name": bike["name"], | |
| "product_type": bike["type"], # or "escooter" | |
| "category": bike["category"], # mountain / folding / cargo ... | |
| "description": bike["description"] | |
| }) | |
| # Create embeddings | |
| embeddings = encoder.encode(descriptions) | |
| # Prepare vectors for Pinecone | |
| vectors_to_upsert = [] | |
| for i in range(len(ids)): | |
| vector = { | |
| 'id': ids[i], | |
| 'values': embeddings[i].tolist(), | |
| 'metadata': metadata[i] | |
| } | |
| vectors_to_upsert.append(vector) | |
| # Upsert vectors to Pinecone | |
| pinecone_index.upsert(vectors=vectors_to_upsert) | |
| print(f"Uploaded {len(vectors_to_upsert)} embeddings to Pinecone") | |
| # Main function to run the embedding creation process | |
| def main(): | |
| # Initialize the embedding model | |
| encoder = OpenAIEmbedder() | |
| # Initialize Pinecone | |
| pinecone_index = initialize_pinecone() | |
| # Load ebikes data | |
| ebikes_data = load_ebikes_data() | |
| # Create and upload embeddings | |
| create_and_upload_embeddings(ebikes_data, encoder, pinecone_index) | |
| print("Embedding creation and upload completed successfully!") | |
| if __name__ == "__main__": | |
| main() |