Spaces:
Sleeping
Sleeping
import json | |
import os | |
from pinecone import Pinecone, ServerlessSpec | |
import numpy as np | |
from openai import OpenAI | |
# Load environment variables | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Get API keys from environment variables | |
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY') | |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
if not PINECONE_API_KEY: | |
raise ValueError("PINECONE_API_KEY environment variable not set") | |
if not OPENAI_API_KEY: | |
raise ValueError("OPENAI_API_KEY environment variable not set") | |
# Initialize OpenAI client | |
openai_client = OpenAI(api_key=OPENAI_API_KEY) | |
# Define the embedding model using OpenAI | |
class OpenAIEmbedder: | |
def __init__(self, model_name="text-embedding-3-small"): | |
self.model_name = model_name | |
self.client = openai_client | |
self.embedding_dimension = 1536 # Dimension of text-embedding-3-small | |
def encode(self, texts): | |
if isinstance(texts, str): | |
texts = [texts] | |
# Get embeddings from OpenAI | |
response = self.client.embeddings.create( | |
input=texts, | |
model=self.model_name | |
) | |
# Extract embeddings from response | |
embeddings = [item.embedding for item in response.data] | |
return np.array(embeddings) | |
# Initialize Pinecone client | |
def initialize_pinecone(): | |
pc = Pinecone(api_key=PINECONE_API_KEY) | |
# Define index name | |
index_name = "ebikes-search" | |
# Check if index already exists | |
existing_indexes = pc.list_indexes().names() | |
if index_name not in existing_indexes: | |
# Create index with 1536 dimensions (matches text-embedding-3-small) | |
pc.create_index( | |
name=index_name, | |
dimension=1536, | |
metric="cosine", | |
spec=ServerlessSpec(cloud="aws", region="us-west-2") | |
) | |
print(f"Created new index: {index_name}") | |
# Connect to the index | |
index = pc.Index(index_name) | |
return index | |
# Load the e-bikes data | |
def load_ebikes_data(file_path="data.json"): | |
with open(file_path, 'r') as f: | |
data = json.load(f) | |
return data.get('pogo-cycles-data', []) | |
# Create embeddings and upload to Pinecone | |
def create_and_upload_embeddings(ebikes_data, encoder, pinecone_index): | |
# Prepare data for indexing | |
ids = [] | |
descriptions = [] | |
metadata = [] | |
for bike in ebikes_data: | |
ids.append(bike['id']) | |
descriptions.append(bike['description']) | |
metadata.append({ | |
"id": bike["id"], | |
"name": bike["name"], | |
"product_type": bike["type"], # or "escooter" | |
"category": bike["category"], # mountain / folding / cargo ... | |
"description": bike["description"] | |
}) | |
# Create embeddings | |
embeddings = encoder.encode(descriptions) | |
# Prepare vectors for Pinecone | |
vectors_to_upsert = [] | |
for i in range(len(ids)): | |
vector = { | |
'id': ids[i], | |
'values': embeddings[i].tolist(), | |
'metadata': metadata[i] | |
} | |
vectors_to_upsert.append(vector) | |
# Upsert vectors to Pinecone | |
pinecone_index.upsert(vectors=vectors_to_upsert) | |
print(f"Uploaded {len(vectors_to_upsert)} embeddings to Pinecone") | |
# Main function to run the embedding creation process | |
def main(): | |
# Initialize the embedding model | |
encoder = OpenAIEmbedder() | |
# Initialize Pinecone | |
pinecone_index = initialize_pinecone() | |
# Load ebikes data | |
ebikes_data = load_ebikes_data() | |
# Create and upload embeddings | |
create_and_upload_embeddings(ebikes_data, encoder, pinecone_index) | |
print("Embedding creation and upload completed successfully!") | |
if __name__ == "__main__": | |
main() |