Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -26,9 +26,20 @@ app = FastAPI(title="E-Bikes Semantic Search API",
|
|
26 |
description="API for finding similar e-bikes based on semantic search",
|
27 |
version="1.0.0")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Request and response models
|
30 |
class SearchRequest(BaseModel):
|
31 |
description: str
|
|
|
|
|
|
|
32 |
|
33 |
class BikeMatch(BaseModel):
|
34 |
id: str
|
@@ -96,7 +107,7 @@ def load_ebikes_data(file_path="data.json"):
|
|
96 |
try:
|
97 |
with open(file_path, 'r') as f:
|
98 |
data = json.load(f)
|
99 |
-
return data.get('
|
100 |
except Exception as e:
|
101 |
print(f"Error loading e-bikes data: {e}")
|
102 |
return []
|
@@ -114,8 +125,9 @@ def create_and_upload_embeddings(ebikes_data, encoder, pinecone_index):
|
|
114 |
metadata.append({
|
115 |
'id': bike['id'],
|
116 |
'name': bike['name'],
|
117 |
-
'type': bike['
|
118 |
-
'description': bike['description']
|
|
|
119 |
})
|
120 |
|
121 |
# Create embeddings
|
@@ -168,7 +180,7 @@ async def health_check():
|
|
168 |
return {"status": "healthy"}
|
169 |
|
170 |
@app.post("/search", response_model=SearchResponse)
|
171 |
-
async def search_ebikes(description: str):
|
172 |
"""
|
173 |
Search for e-bikes similar to the provided description
|
174 |
|
@@ -177,12 +189,14 @@ async def search_ebikes(description: str):
|
|
177 |
try:
|
178 |
# Create embedding for the query
|
179 |
query_embedding = encoder.encode(description)[0]
|
180 |
-
|
|
|
181 |
# Query Pinecone
|
182 |
results = pinecone_index.query(
|
183 |
vector=query_embedding.tolist(),
|
184 |
top_k=3,
|
185 |
-
include_metadata=True
|
|
|
186 |
)
|
187 |
|
188 |
# Parse results
|
|
|
26 |
description="API for finding similar e-bikes based on semantic search",
|
27 |
version="1.0.0")
|
28 |
|
29 |
+
def build_filter(pt: Optional[str], cat: Optional[str]) -> dict | None:
|
30 |
+
filt = {}
|
31 |
+
if pt:
|
32 |
+
filt["product_type"] = pt # shorthand $eq
|
33 |
+
if cat:
|
34 |
+
filt["category"] = cat
|
35 |
+
return filt or None
|
36 |
+
|
37 |
# Request and response models
|
38 |
class SearchRequest(BaseModel):
|
39 |
description: str
|
40 |
+
top_k: int = 3
|
41 |
+
product_type: Optional[str] = None # "ebike" or "escooter"
|
42 |
+
category: Optional[str] = None # e.g. "mountain"
|
43 |
|
44 |
class BikeMatch(BaseModel):
|
45 |
id: str
|
|
|
107 |
try:
|
108 |
with open(file_path, 'r') as f:
|
109 |
data = json.load(f)
|
110 |
+
return data.get('pogo-cycles-data', [])
|
111 |
except Exception as e:
|
112 |
print(f"Error loading e-bikes data: {e}")
|
113 |
return []
|
|
|
125 |
metadata.append({
|
126 |
'id': bike['id'],
|
127 |
'name': bike['name'],
|
128 |
+
'type': bike['product_type'],
|
129 |
+
'description': bike['description'],
|
130 |
+
'category': bike['category']
|
131 |
})
|
132 |
|
133 |
# Create embeddings
|
|
|
180 |
return {"status": "healthy"}
|
181 |
|
182 |
@app.post("/search", response_model=SearchResponse)
|
183 |
+
async def search_ebikes(description: str,filters:dict):
|
184 |
"""
|
185 |
Search for e-bikes similar to the provided description
|
186 |
|
|
|
189 |
try:
|
190 |
# Create embedding for the query
|
191 |
query_embedding = encoder.encode(description)[0]
|
192 |
+
filter_payload = build_filter(filters.get("product_type"), filters.get("category"))
|
193 |
+
|
194 |
# Query Pinecone
|
195 |
results = pinecone_index.query(
|
196 |
vector=query_embedding.tolist(),
|
197 |
top_k=3,
|
198 |
+
include_metadata=True,
|
199 |
+
filter=filter_payload
|
200 |
)
|
201 |
|
202 |
# Parse results
|