Spaces:
Sleeping
Sleeping
| import logging | |
| import torch | |
| from tqdm.auto import tqdm | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| def load_model_and_tokenizer(model_name): | |
| """ | |
| load_model_and_tokenizer - a function that loads a model and tokenizer from huggingface | |
| Args: | |
| model_name (str): the name of the model to load | |
| Returns: | |
| AutoModelForSeq2SeqLM: the model | |
| AutoTokenizer: the tokenizer | |
| """ | |
| model = AutoModelForSeq2SeqLM.from_pretrained( | |
| model_name, | |
| low_cpu_mem_usage=True, | |
| use_cache=False, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = model.to("cuda") if torch.cuda.is_available() else model | |
| return model, tokenizer | |
| def summarize_and_score(ids, mask, model, tokenizer, **kwargs): | |
| """ | |
| summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary | |
| Args: | |
| ids (): the batch of ids | |
| mask (): the attention mask for the batch | |
| model (): the model to use for summarization | |
| tokenizer (): the tokenizer to use for summarization | |
| Returns: | |
| str: the summary of the batch | |
| """ | |
| ids = ids[None, :] | |
| mask = mask[None, :] | |
| input_ids = ids.to("cuda") if torch.cuda.is_available() else ids | |
| attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask | |
| attention_mask = mask.to("cuda") | |
| global_attention_mask = torch.zeros_like(attention_mask) | |
| # put global attention on <s> token | |
| global_attention_mask[:, 0] = 1 | |
| summary_pred_ids = model.generate( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| global_attention_mask=global_attention_mask, | |
| output_scores=True, | |
| return_dict_in_generate=True, | |
| **kwargs, | |
| ) | |
| summary = tokenizer.batch_decode( | |
| summary_pred_ids.sequences, | |
| skip_special_tokens=True, | |
| remove_invalid_values=True, | |
| ) | |
| score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4) | |
| return summary, score | |
| def summarize_via_tokenbatches( | |
| input_text: str, | |
| model, | |
| tokenizer, | |
| batch_length=2048, | |
| batch_stride=16, | |
| **kwargs, | |
| ): | |
| """ | |
| summarize_via_tokenbatches - a function that takes a string and returns a summary | |
| Args: | |
| input_text (str): the text to summarize | |
| model (): the model to use for summarization | |
| tokenizer (): the tokenizer to use for summarization | |
| batch_length (int, optional): the length of each batch. Defaults to 2048. | |
| batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches. | |
| Returns: | |
| str: the summary | |
| """ | |
| # log all input parameters | |
| print(f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}") | |
| encoded_input = tokenizer( | |
| input_text, | |
| padding="max_length", | |
| truncation=True, | |
| max_length=batch_length, | |
| stride=batch_stride, | |
| return_overflowing_tokens=True, | |
| add_special_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask | |
| gen_summaries = [] | |
| pbar = tqdm(total=len(in_id_arr)) | |
| for _id, _mask in zip(in_id_arr, att_arr): | |
| result, score = summarize_and_score( | |
| ids=_id, | |
| mask=_mask, | |
| model=model, | |
| tokenizer=tokenizer, | |
| **kwargs, | |
| ) | |
| score = round(float(score), 4) | |
| _sum = { | |
| "input_tokens": _id, | |
| "summary": result, | |
| "summary_score": score, | |
| } | |
| gen_summaries.append(_sum) | |
| print(f"\t{result[0]}\nScore:\t{score}") | |
| pbar.update() | |
| pbar.close() | |
| return gen_summaries | |