Spaces:
Sleeping
Sleeping
File size: 14,185 Bytes
f83d6df 749ea04 3960a1f f83d6df a9dca21 fc23f51 3960a1f a9dca21 749ea04 a9dca21 749ea04 f83d6df a9dca21 749ea04 a9dca21 749ea04 a9dca21 f83d6df 749ea04 a9dca21 749ea04 f83d6df 749ea04 a9dca21 f83d6df 749ea04 fc23f51 749ea04 a9dca21 749ea04 a9dca21 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 a9dca21 749ea04 f83d6df a9dca21 f83d6df a9dca21 749ea04 a9dca21 749ea04 a9dca21 749ea04 f83d6df a9dca21 3960a1f f83d6df 749ea04 f83d6df 3960a1f 749ea04 f83d6df a9dca21 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df 749ea04 f83d6df e1255d1 3960a1f f83d6df a9dca21 749ea04 a9dca21 e1255d1 749ea04 a9dca21 e1255d1 749ea04 3960a1f f83d6df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import argparse
import json
import os
from datetime import datetime
from geo_bot import GeoBot
from benchmark import MapGuesserBenchmark
from data_collector import DataCollector
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM, get_model_class
from collections import OrderedDict
from tqdm import tqdm
import matplotlib.pyplot as plt
def agent_mode(
model_name: str,
steps: int,
headless: bool,
samples: int,
dataset_name: str = "default",
temperature: float = 0.0,
):
"""
Runs the AI Agent in a benchmark loop over multiple samples,
using multi-step exploration for each.
"""
print(
f"Starting Agent Mode: model={model_name}, steps={steps}, samples={samples}, dataset={dataset_name}, temperature={temperature}"
)
data_paths = get_data_paths(dataset_name)
try:
with open(data_paths["golden_labels"], "r", encoding="utf-8") as f:
golden_labels = json.load(f).get("samples", [])
except FileNotFoundError:
print(
f"Error: Dataset '{dataset_name}' not found at {data_paths['golden_labels']}."
)
return
if not golden_labels:
print(f"Error: No samples found in dataset '{dataset_name}'.")
return
num_to_test = min(samples, len(golden_labels))
test_samples = golden_labels[:num_to_test]
print(f"Will run on {len(test_samples)} samples from dataset '{dataset_name}'.")
config = MODELS_CONFIG.get(model_name)
model_class = get_model_class(config["class"])
model_instance_name = config["model_name"]
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=True)
all_results = []
with GeoBot(
model=model_class,
model_name=model_instance_name,
headless=headless,
temperature=temperature,
) as bot:
for i, sample in enumerate(test_samples):
print(
f"\n--- Running Sample {i + 1}/{len(test_samples)} (ID: {sample.get('id')}) ---"
)
if not bot.controller.load_location_from_data(sample):
print(
f" β Failed to load location for sample {sample.get('id')}. Skipping."
)
continue
bot.controller.setup_clean_environment()
final_guess = bot.run_agent_loop(max_steps=steps)
true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
distance_km = None
is_success = False
if final_guess:
distance_km = benchmark_helper.calculate_distance(
true_coords, final_guess
)
if distance_km is not None:
is_success = distance_km <= SUCCESS_THRESHOLD_KM
print(f"\nResult for Sample ID: {sample.get('id')}")
print(
f" Ground Truth: Lat={true_coords['lat']:.4f}, Lon={true_coords['lng']:.4f}"
)
print(
f" Final Guess: Lat={final_guess[0]:.4f}, Lon={final_guess[1]:.4f}"
)
dist_str = f"{distance_km:.1f} km" if distance_km is not None else "N/A"
print(f" Distance: {dist_str}, Success: {is_success}")
else:
print("Agent did not make a final guess for this sample.")
all_results.append(
{
"sample_id": sample.get("id"),
"model": bot.model_name,
"true_coordinates": true_coords,
"predicted_coordinates": final_guess,
"distance_km": distance_km,
"success": is_success,
}
)
summary = benchmark_helper.generate_summary(all_results)
if summary:
print(
f"\n\n--- Agent Benchmark Complete for dataset '{dataset_name}'! Summary ---"
)
for model, stats in summary.items():
print(f"Model: {model}")
print(f" Success Rate: {stats['success_rate'] * 100:.1f}%")
print(f" Avg Distance: {stats['average_distance_km']:.1f} km")
print("Agent Mode finished.")
def benchmark_mode(
models: list,
samples: int,
headless: bool,
dataset_name: str = "default",
temperature: float = 0.0,
):
"""Runs the benchmark on pre-collected data."""
print(
f"Starting Benchmark Mode: models={models}, samples={samples}, dataset={dataset_name}, temperature={temperature}"
)
benchmark = MapGuesserBenchmark(dataset_name=dataset_name, headless=headless)
summary = benchmark.run_benchmark(
models=models, max_samples=samples, temperature=temperature
)
if summary:
print(f"\n--- Benchmark Complete for dataset '{dataset_name}'! Summary ---")
for model, stats in summary.items():
print(f"Model: {model}")
print(f" Success Rate: {stats['success_rate'] * 100:.1f}%")
print(f" Avg Distance: {stats['average_distance_km']:.1f} km")
def collect_mode(dataset_name: str, samples: int, headless: bool):
"""Collects data for a new dataset."""
print(f"Starting Data Collection: dataset={dataset_name}, samples={samples}")
with DataCollector(dataset_name=dataset_name, headless=headless) as collector:
collector.collect_samples(num_samples=samples)
print(f"Data collection complete for dataset '{dataset_name}'.")
def test_mode(
models: list,
samples: int,
runs: int,
steps: int,
dataset_name: str = "default",
temperature: float = 0.0,
headless: bool = True,
):
"""
CLI multi-model / multi-run benchmark.
For each model:
β’ run N times
β’ each run evaluates `samples` images
β’ record hit-rate per step and average distance
"""
# ---------- load dataset ----------
data_paths = get_data_paths(dataset_name)
try:
with open(data_paths["golden_labels"], "r", encoding="utf-8") as f:
all_samples = json.load(f)["samples"]
except FileNotFoundError:
print(f"β dataset '{dataset_name}' not found.")
return
if not all_samples:
print("β dataset is empty.")
return
test_samples = all_samples[:samples]
print(f"π loaded {len(test_samples)} samples from '{dataset_name}'")
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=headless)
summary_by_step: dict[str, list[float]] = OrderedDict()
avg_distances: dict[str, float] = {}
time_tag = datetime.now().strftime("%Y%m%d_%H%M%S")
base_dir = os.path.join("./results", "test", time_tag)
os.makedirs(base_dir, exist_ok=True)
# ---------- iterate over models ----------
for model_name in models:
log_json={}
print(f"\n===== {model_name} =====")
cfg = MODELS_CONFIG[model_name]
model_cls = get_model_class(cfg["class"])
hits_per_step = [0] * steps
distance_per_step = [0.0] * steps
total_iterations = runs * len(test_samples)
with tqdm(total=total_iterations, desc=model_name) as pbar:
for _ in range(runs):
with GeoBot(
model=model_cls,
model_name=cfg["model_name"],
headless=headless,
temperature=temperature,
) as bot:
for sample in test_samples:
if not bot.controller.load_location_from_data(sample):
pbar.update(1)
continue
preds = bot.test_run_agent_loop(max_steps=steps)
gt = {"lat": sample["lat"], "lng": sample["lng"]}
if sample["id"] not in log_json:
log_json[sample["id"]] = []
for idx, pred in enumerate(preds):
if isinstance(pred, dict) and "lat" in pred:
dist = benchmark_helper.calculate_distance(
gt, (pred["lat"], pred["lon"])
)
if dist is not None:
distance_per_step[idx] += dist
preds[idx]["distance"] = dist
if dist <= SUCCESS_THRESHOLD_KM:
hits_per_step[idx] += 1
preds[idx]["success"] = True
else:
preds[idx]["success"] = False
log_json[sample["id"]].append({
"run_id": _,
"predictions": preds,
})
pbar.update(1)
os.makedirs(f"{base_dir}/{model_name}", exist_ok=True)
with open(f"{base_dir}/{model_name}/{model_name}_log.json", "w") as f:
json.dump(log_json, f, indent=2)
denom = runs * len(test_samples)
summary_by_step[model_name] = [h / denom for h in hits_per_step]
avg_distances[model_name] = [d / denom for d in distance_per_step]
payload = {
"avg_distance_km": avg_distances[model_name],
"accuracy_per_step": summary_by_step[model_name]
}
with open(f"{base_dir}/{model_name}/{model_name}.json", "w") as f:
json.dump(payload, f, indent=2)
print(f"πΎ results saved to {base_dir}")
# ---------- pretty table ----------
header = ["Step"] + list(summary_by_step.keys())
row_width = max(len(h) for h in header) + 2
print("\n=== ACCURACY PER STEP ===")
print(" | ".join(h.center(row_width) for h in header))
print("-" * (row_width + 3) * len(header))
for i in range(steps):
cells = [str(i + 1).center(row_width)]
for m in summary_by_step:
cells.append(f"{summary_by_step[m][i]*100:5.1f}%".center(row_width))
print(" | ".join(cells))
print("\n=== AVG DISTANCE PER STEP (km) ===")
header = ["Step"] + list(avg_distances.keys())
row_w = max(len(h) for h in header) + 2
print(" | ".join(h.center(row_w) for h in header))
print("-" * (row_w + 3) * len(header))
for i in range(steps):
cells = [str(i+1).center(row_w)]
for m in avg_distances:
v = avg_distances[m][i]
cells.append(f"{v:6.1f}" if v is not None else " N/A ".center(row_w))
print(" | ".join(cells))
try:
for model, acc in summary_by_step.items():
plt.plot(range(1, steps + 1), acc, marker="o", label=model)
plt.xlabel("step")
plt.ylabel("accuracy")
plt.ylim(0, 1)
plt.legend()
plt.grid(True, alpha=0.3)
plt.title("Accuracy vs Step")
plt.savefig(f"{base_dir}/accuracy_step.png", dpi=120)
print("\nπ saved plot to accuracy_step.png")
# Plot average distance per model
plt.figure()
for model, acc in avg_distances.items():
plt.plot(range(1, steps + 1), acc, marker="o", label=model)
plt.xlabel("step")
plt.ylabel("Avg Distance (km)")
plt.title("Average Distance per Model")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
plt.savefig(f"{base_dir}/avg_distance.png", dpi=120)
print("π saved plot to avg_distance.png")
except Exception as e:
print(f"β οΈ plot skipped: {e}")
def main():
parser = argparse.ArgumentParser(description="MapCrunch AI Agent & Benchmark")
parser.add_argument(
"--mode",
choices=["agent", "benchmark", "collect", "test"],
default="agent",
help="Operation mode.",
)
parser.add_argument(
"--dataset",
default="default",
help="Dataset name to use or create.",
)
parser.add_argument(
"--model",
choices=list(MODELS_CONFIG.keys()),
default="gpt-4o",
help="Model to use.",
)
parser.add_argument(
"--steps", type=int, default=10, help="[Agent] Number of exploration steps."
)
parser.add_argument(
"--samples",
type=int,
default=50,
help="Number of samples to process for the selected mode.",
)
parser.add_argument(
"--headless", action="store_true", help="Run browser in headless mode."
)
parser.add_argument(
"--models",
nargs="+",
choices=list(MODELS_CONFIG.keys()),
help="[Benchmark] Models to benchmark.",
)
parser.add_argument(
"--temperature",
type=float,
default=0.0,
help="Temperature parameter for LLM sampling (0.0 = deterministic, higher = more random). Default: 0.0",
)
parser.add_argument("--runs", type=int, default=3, help="[Test] Runs per model")
args = parser.parse_args()
if args.mode == "collect":
collect_mode(
dataset_name=args.dataset,
samples=args.samples,
headless=args.headless,
)
elif args.mode == "agent":
agent_mode(
model_name=args.model,
steps=args.steps,
headless=args.headless,
samples=args.samples,
dataset_name=args.dataset,
temperature=args.temperature,
)
elif args.mode == "benchmark":
benchmark_mode(
models=args.models or [args.model],
samples=args.samples,
headless=args.headless,
dataset_name=args.dataset,
temperature=args.temperature,
)
elif args.mode == "test":
test_mode(
models=args.models or [args.model],
samples=args.samples,
runs=args.runs,
steps=args.steps,
dataset_name=args.dataset,
temperature=args.temperature,
headless=args.headless,
)
if __name__ == "__main__":
main()
|