Spaces:
Sleeping
Sleeping
Merge pull request #2 from yichuan520030910320/qwen
Browse files- app.py +78 -71
- benchmark.py +4 -21
- config.py +97 -11
- geo_bot.py +0 -6
- main.py +2 -8
app.py
CHANGED
@@ -3,38 +3,31 @@ import json
|
|
3 |
import os
|
4 |
import time
|
5 |
import re
|
6 |
-
from io import BytesIO
|
7 |
-
from PIL import Image
|
8 |
from pathlib import Path
|
9 |
-
import pyperclip
|
10 |
|
11 |
-
from geo_bot import GeoBot
|
12 |
from benchmark import MapGuesserBenchmark
|
13 |
-
from config import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
if "GOOGLE_API_KEY" in st.secrets:
|
25 |
-
os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"]
|
26 |
-
if "HF_TOKEN" in st.secrets:
|
27 |
-
os.environ["HF_TOKEN"] = st.secrets["HF_TOKEN"]
|
28 |
|
29 |
|
30 |
def convert_google_to_mapcrunch_url(google_url):
|
31 |
"""Convert Google Maps URL to MapCrunch URL format."""
|
32 |
try:
|
33 |
# Extract coordinates using regex
|
34 |
-
match = re.search(r
|
35 |
if not match:
|
36 |
return None
|
37 |
-
|
38 |
lat, lon = match.groups()
|
39 |
# MapCrunch format: lat_lon_heading_pitch_zoom
|
40 |
# Using default values for heading (317.72), pitch (0.86), and zoom (0)
|
@@ -58,21 +51,10 @@ def get_available_datasets():
|
|
58 |
return datasets if datasets else ["default"]
|
59 |
|
60 |
|
61 |
-
def get_model_class(class_name):
|
62 |
-
if class_name == "ChatOpenAI":
|
63 |
-
return ChatOpenAI
|
64 |
-
elif class_name == "ChatAnthropic":
|
65 |
-
return ChatAnthropic
|
66 |
-
elif class_name == "ChatGoogleGenerativeAI":
|
67 |
-
return ChatGoogleGenerativeAI
|
68 |
-
elif class_name == "HuggingFaceChat":
|
69 |
-
return HuggingFaceChat
|
70 |
-
else:
|
71 |
-
raise ValueError(f"Unknown model class: {class_name}")
|
72 |
-
|
73 |
-
|
74 |
# UI Setup
|
75 |
-
st.set_page_config(
|
|
|
|
|
76 |
st.title("🧠 Omniscient")
|
77 |
st.markdown("""
|
78 |
### *An all-seeing AI agent for geographic analysis and deduction*
|
@@ -86,14 +68,18 @@ with st.sidebar:
|
|
86 |
|
87 |
# Mode selection
|
88 |
mode = st.radio("Mode", ["Dataset Mode", "Online Mode"], index=0)
|
89 |
-
|
90 |
if mode == "Dataset Mode":
|
91 |
# Get available datasets and ensure we have a valid default
|
92 |
available_datasets = get_available_datasets()
|
93 |
default_dataset = available_datasets[0] if available_datasets else "default"
|
94 |
-
|
95 |
dataset_choice = st.selectbox("Dataset", available_datasets, index=0)
|
96 |
-
model_choice = st.selectbox(
|
|
|
|
|
|
|
|
|
97 |
steps_per_sample = st.slider("Max Steps", 1, 20, 10)
|
98 |
temperature = st.slider(
|
99 |
"Temperature",
|
@@ -109,14 +95,16 @@ with st.sidebar:
|
|
109 |
try:
|
110 |
with open(data_paths["golden_labels"], "r") as f:
|
111 |
golden_labels = json.load(f).get("samples", [])
|
112 |
-
|
113 |
st.info(f"Dataset '{dataset_choice}' has {len(golden_labels)} samples")
|
114 |
if len(golden_labels) == 0:
|
115 |
st.error(f"Dataset '{dataset_choice}' contains no samples!")
|
116 |
st.stop()
|
117 |
-
|
118 |
except FileNotFoundError:
|
119 |
-
st.error(
|
|
|
|
|
120 |
st.info("💡 Available datasets: " + ", ".join(available_datasets))
|
121 |
st.stop()
|
122 |
except Exception as e:
|
@@ -128,19 +116,21 @@ with st.sidebar:
|
|
128 |
)
|
129 |
else: # Online Mode
|
130 |
st.info("Enter a URL to analyze a specific location")
|
131 |
-
|
132 |
# Add example URLs
|
133 |
example_google_url = "https://www.google.com/maps/@37.8728123,-122.2445339,3a,75y,3.36h,90t/data=!3m7!1e1!3m5!1s4DTABKOpCL6hdNRgnAHTgw!2e0!6shttps:%2F%2Fstreetviewpixels-pa.googleapis.com%2Fv1%2Fthumbnail%3Fcb_client%3Dmaps_sv.tactile%26w%3D900%26h%3D600%26pitch%3D0%26panoid%3D4DTABKOpCL6hdNRgnAHTgw%26yaw%3D3.3576431!7i13312!8i6656?entry=ttu"
|
134 |
-
example_mapcrunch_url =
|
135 |
-
|
|
|
|
|
136 |
# Create tabs for different URL types
|
137 |
input_tab1, input_tab2 = st.tabs(["Google Maps URL", "MapCrunch URL"])
|
138 |
-
|
139 |
google_url = ""
|
140 |
mapcrunch_url = ""
|
141 |
golden_labels = None
|
142 |
num_samples = None
|
143 |
-
|
144 |
with input_tab1:
|
145 |
url_col1, url_col2 = st.columns([3, 1])
|
146 |
with url_col1:
|
@@ -149,56 +139,68 @@ with st.sidebar:
|
|
149 |
placeholder="https://www.google.com/maps/@37.5851338,-122.1519467,9z?entry=ttu",
|
150 |
key="google_maps_url",
|
151 |
)
|
152 |
-
st.markdown(
|
|
|
|
|
153 |
if google_url:
|
154 |
mapcrunch_url_converted = convert_google_to_mapcrunch_url(google_url)
|
155 |
if mapcrunch_url_converted:
|
156 |
st.success(f"Converted to MapCrunch URL: {mapcrunch_url_converted}")
|
157 |
try:
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
num_samples = 1
|
165 |
except Exception as e:
|
166 |
st.error(f"Invalid Google Maps URL format: {str(e)}")
|
167 |
else:
|
168 |
st.error("Invalid Google Maps URL format")
|
169 |
-
|
170 |
with input_tab2:
|
171 |
st.markdown("💡 **Example Location:**")
|
172 |
st.markdown(f"[View in MapCrunch]({example_mapcrunch_url})")
|
173 |
st.code(example_mapcrunch_url, language="text")
|
174 |
mapcrunch_url = st.text_input(
|
175 |
-
"MapCrunch URL",
|
176 |
-
placeholder=example_mapcrunch_url,
|
177 |
-
key="mapcrunch_url"
|
178 |
)
|
179 |
if mapcrunch_url:
|
180 |
try:
|
181 |
-
coords = mapcrunch_url.split(
|
182 |
lat, lon = float(coords[0]), float(coords[1])
|
183 |
-
golden_labels = [
|
184 |
-
"id": "online",
|
185 |
-
|
186 |
-
"lng": lon,
|
187 |
-
"url": mapcrunch_url
|
188 |
-
}]
|
189 |
num_samples = 1
|
190 |
except Exception as e:
|
191 |
st.error(f"Invalid MapCrunch URL format: {str(e)}")
|
192 |
-
|
193 |
# Only stop if neither input is provided
|
194 |
if not google_url and not mapcrunch_url:
|
195 |
-
st.warning(
|
|
|
|
|
196 |
st.stop()
|
197 |
if golden_labels is None or num_samples is None:
|
198 |
st.warning("Please enter a valid URL.")
|
199 |
st.stop()
|
200 |
-
|
201 |
-
model_choice = st.selectbox(
|
|
|
|
|
|
|
|
|
202 |
steps_per_sample = st.slider("Max Steps", 1, 20, 10)
|
203 |
temperature = st.slider(
|
204 |
"Temperature",
|
@@ -217,7 +219,9 @@ if start_button:
|
|
217 |
config = MODELS_CONFIG[model_choice]
|
218 |
model_class = get_model_class(config["class"])
|
219 |
|
220 |
-
benchmark_helper = MapGuesserBenchmark(
|
|
|
|
|
221 |
all_results = []
|
222 |
|
223 |
progress_bar = st.progress(0)
|
@@ -238,7 +242,7 @@ if start_button:
|
|
238 |
else:
|
239 |
# Load from dataset as before
|
240 |
bot.controller.load_location_from_data(sample)
|
241 |
-
|
242 |
bot.controller.setup_clean_environment()
|
243 |
|
244 |
# Create containers for UI updates
|
@@ -421,7 +425,10 @@ if start_button:
|
|
421 |
mime="application/json",
|
422 |
)
|
423 |
|
|
|
424 |
def handle_tab_completion():
|
425 |
"""Handle tab completion for the Google Maps URL input."""
|
426 |
if st.session_state.google_maps_url == "":
|
427 |
-
st.session_state.google_maps_url =
|
|
|
|
|
|
3 |
import os
|
4 |
import time
|
5 |
import re
|
|
|
|
|
6 |
from pathlib import Path
|
|
|
7 |
|
8 |
+
from geo_bot import GeoBot
|
9 |
from benchmark import MapGuesserBenchmark
|
10 |
+
from config import (
|
11 |
+
MODELS_CONFIG,
|
12 |
+
get_data_paths,
|
13 |
+
SUCCESS_THRESHOLD_KM,
|
14 |
+
get_model_class,
|
15 |
+
DEFAULT_MODEL,
|
16 |
+
DEFAULT_TEMPERATURE,
|
17 |
+
setup_environment_variables,
|
18 |
+
)
|
19 |
+
|
20 |
+
setup_environment_variables(st.secrets)
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
def convert_google_to_mapcrunch_url(google_url):
|
24 |
"""Convert Google Maps URL to MapCrunch URL format."""
|
25 |
try:
|
26 |
# Extract coordinates using regex
|
27 |
+
match = re.search(r"@(-?\d+\.\d+),(-?\d+\.\d+)", google_url)
|
28 |
if not match:
|
29 |
return None
|
30 |
+
|
31 |
lat, lon = match.groups()
|
32 |
# MapCrunch format: lat_lon_heading_pitch_zoom
|
33 |
# Using default values for heading (317.72), pitch (0.86), and zoom (0)
|
|
|
51 |
return datasets if datasets else ["default"]
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# UI Setup
|
55 |
+
st.set_page_config(
|
56 |
+
page_title="🧠 Omniscient - Multiturn Geographic Intelligence", layout="wide"
|
57 |
+
)
|
58 |
st.title("🧠 Omniscient")
|
59 |
st.markdown("""
|
60 |
### *An all-seeing AI agent for geographic analysis and deduction*
|
|
|
68 |
|
69 |
# Mode selection
|
70 |
mode = st.radio("Mode", ["Dataset Mode", "Online Mode"], index=0)
|
71 |
+
|
72 |
if mode == "Dataset Mode":
|
73 |
# Get available datasets and ensure we have a valid default
|
74 |
available_datasets = get_available_datasets()
|
75 |
default_dataset = available_datasets[0] if available_datasets else "default"
|
76 |
+
|
77 |
dataset_choice = st.selectbox("Dataset", available_datasets, index=0)
|
78 |
+
model_choice = st.selectbox(
|
79 |
+
"Model",
|
80 |
+
list(MODELS_CONFIG.keys()),
|
81 |
+
index=list(MODELS_CONFIG.keys()).index(DEFAULT_MODEL),
|
82 |
+
)
|
83 |
steps_per_sample = st.slider("Max Steps", 1, 20, 10)
|
84 |
temperature = st.slider(
|
85 |
"Temperature",
|
|
|
95 |
try:
|
96 |
with open(data_paths["golden_labels"], "r") as f:
|
97 |
golden_labels = json.load(f).get("samples", [])
|
98 |
+
|
99 |
st.info(f"Dataset '{dataset_choice}' has {len(golden_labels)} samples")
|
100 |
if len(golden_labels) == 0:
|
101 |
st.error(f"Dataset '{dataset_choice}' contains no samples!")
|
102 |
st.stop()
|
103 |
+
|
104 |
except FileNotFoundError:
|
105 |
+
st.error(
|
106 |
+
f"❌ Dataset '{dataset_choice}' not found at {data_paths['golden_labels']}"
|
107 |
+
)
|
108 |
st.info("💡 Available datasets: " + ", ".join(available_datasets))
|
109 |
st.stop()
|
110 |
except Exception as e:
|
|
|
116 |
)
|
117 |
else: # Online Mode
|
118 |
st.info("Enter a URL to analyze a specific location")
|
119 |
+
|
120 |
# Add example URLs
|
121 |
example_google_url = "https://www.google.com/maps/@37.8728123,-122.2445339,3a,75y,3.36h,90t/data=!3m7!1e1!3m5!1s4DTABKOpCL6hdNRgnAHTgw!2e0!6shttps:%2F%2Fstreetviewpixels-pa.googleapis.com%2Fv1%2Fthumbnail%3Fcb_client%3Dmaps_sv.tactile%26w%3D900%26h%3D600%26pitch%3D0%26panoid%3D4DTABKOpCL6hdNRgnAHTgw%26yaw%3D3.3576431!7i13312!8i6656?entry=ttu"
|
122 |
+
example_mapcrunch_url = (
|
123 |
+
"http://www.mapcrunch.com/p/37.882284_-122.269626_293.91_-6.63_0"
|
124 |
+
)
|
125 |
+
|
126 |
# Create tabs for different URL types
|
127 |
input_tab1, input_tab2 = st.tabs(["Google Maps URL", "MapCrunch URL"])
|
128 |
+
|
129 |
google_url = ""
|
130 |
mapcrunch_url = ""
|
131 |
golden_labels = None
|
132 |
num_samples = None
|
133 |
+
|
134 |
with input_tab1:
|
135 |
url_col1, url_col2 = st.columns([3, 1])
|
136 |
with url_col1:
|
|
|
139 |
placeholder="https://www.google.com/maps/@37.5851338,-122.1519467,9z?entry=ttu",
|
140 |
key="google_maps_url",
|
141 |
)
|
142 |
+
st.markdown(
|
143 |
+
f"💡 **Example Location:** [View in Google Maps]({example_google_url})"
|
144 |
+
)
|
145 |
if google_url:
|
146 |
mapcrunch_url_converted = convert_google_to_mapcrunch_url(google_url)
|
147 |
if mapcrunch_url_converted:
|
148 |
st.success(f"Converted to MapCrunch URL: {mapcrunch_url_converted}")
|
149 |
try:
|
150 |
+
match = re.search(r"@(-?\d+\.\d+),(-?\d+\.\d+)", google_url)
|
151 |
+
if not match:
|
152 |
+
st.error("Invalid Google Maps URL format")
|
153 |
+
st.stop()
|
154 |
+
|
155 |
+
lat, lon = match.groups()
|
156 |
+
|
157 |
+
golden_labels = [
|
158 |
+
{
|
159 |
+
"id": "online",
|
160 |
+
"lat": float(lat),
|
161 |
+
"lng": float(lon),
|
162 |
+
"url": mapcrunch_url_converted,
|
163 |
+
}
|
164 |
+
]
|
165 |
num_samples = 1
|
166 |
except Exception as e:
|
167 |
st.error(f"Invalid Google Maps URL format: {str(e)}")
|
168 |
else:
|
169 |
st.error("Invalid Google Maps URL format")
|
170 |
+
|
171 |
with input_tab2:
|
172 |
st.markdown("💡 **Example Location:**")
|
173 |
st.markdown(f"[View in MapCrunch]({example_mapcrunch_url})")
|
174 |
st.code(example_mapcrunch_url, language="text")
|
175 |
mapcrunch_url = st.text_input(
|
176 |
+
"MapCrunch URL", placeholder=example_mapcrunch_url, key="mapcrunch_url"
|
|
|
|
|
177 |
)
|
178 |
if mapcrunch_url:
|
179 |
try:
|
180 |
+
coords = mapcrunch_url.split("/")[-1].split("_")
|
181 |
lat, lon = float(coords[0]), float(coords[1])
|
182 |
+
golden_labels = [
|
183 |
+
{"id": "online", "lat": lat, "lng": lon, "url": mapcrunch_url}
|
184 |
+
]
|
|
|
|
|
|
|
185 |
num_samples = 1
|
186 |
except Exception as e:
|
187 |
st.error(f"Invalid MapCrunch URL format: {str(e)}")
|
188 |
+
|
189 |
# Only stop if neither input is provided
|
190 |
if not google_url and not mapcrunch_url:
|
191 |
+
st.warning(
|
192 |
+
"Please enter a Google Maps URL or MapCrunch URL, or use the example above."
|
193 |
+
)
|
194 |
st.stop()
|
195 |
if golden_labels is None or num_samples is None:
|
196 |
st.warning("Please enter a valid URL.")
|
197 |
st.stop()
|
198 |
+
|
199 |
+
model_choice = st.selectbox(
|
200 |
+
"Model",
|
201 |
+
list(MODELS_CONFIG.keys()),
|
202 |
+
index=list(MODELS_CONFIG.keys()).index(DEFAULT_MODEL),
|
203 |
+
)
|
204 |
steps_per_sample = st.slider("Max Steps", 1, 20, 10)
|
205 |
temperature = st.slider(
|
206 |
"Temperature",
|
|
|
219 |
config = MODELS_CONFIG[model_choice]
|
220 |
model_class = get_model_class(config["class"])
|
221 |
|
222 |
+
benchmark_helper = MapGuesserBenchmark(
|
223 |
+
dataset_name=dataset_choice if mode == "Dataset Mode" else "online"
|
224 |
+
)
|
225 |
all_results = []
|
226 |
|
227 |
progress_bar = st.progress(0)
|
|
|
242 |
else:
|
243 |
# Load from dataset as before
|
244 |
bot.controller.load_location_from_data(sample)
|
245 |
+
|
246 |
bot.controller.setup_clean_environment()
|
247 |
|
248 |
# Create containers for UI updates
|
|
|
425 |
mime="application/json",
|
426 |
)
|
427 |
|
428 |
+
|
429 |
def handle_tab_completion():
|
430 |
"""Handle tab completion for the Google Maps URL input."""
|
431 |
if st.session_state.google_maps_url == "":
|
432 |
+
st.session_state.google_maps_url = (
|
433 |
+
"https://www.google.com/maps/@37.5851338,-122.1519467,9z?entry=ttu"
|
434 |
+
)
|
benchmark.py
CHANGED
@@ -9,7 +9,7 @@ from pathlib import Path
|
|
9 |
import math
|
10 |
|
11 |
from geo_bot import GeoBot
|
12 |
-
from config import get_data_paths, MODELS_CONFIG, SUCCESS_THRESHOLD_KM
|
13 |
|
14 |
|
15 |
class MapGuesserBenchmark:
|
@@ -29,25 +29,6 @@ class MapGuesserBenchmark:
|
|
29 |
except Exception:
|
30 |
return []
|
31 |
|
32 |
-
def get_model_class(self, model_name: str):
|
33 |
-
config = MODELS_CONFIG.get(model_name)
|
34 |
-
if not config:
|
35 |
-
raise ValueError(f"Unknown model: {model_name}")
|
36 |
-
class_name, model_class_name = config["class"], config["model_name"]
|
37 |
-
if class_name == "ChatOpenAI":
|
38 |
-
from langchain_openai import ChatOpenAI
|
39 |
-
|
40 |
-
return ChatOpenAI, model_class_name
|
41 |
-
if class_name == "ChatAnthropic":
|
42 |
-
from langchain_anthropic import ChatAnthropic
|
43 |
-
|
44 |
-
return ChatAnthropic, model_class_name
|
45 |
-
if class_name == "ChatGoogleGenerativeAI":
|
46 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
47 |
-
|
48 |
-
return ChatGoogleGenerativeAI, model_class_name
|
49 |
-
raise ValueError(f"Unknown model class: {class_name}")
|
50 |
-
|
51 |
def calculate_distance(
|
52 |
self, true_coords: Dict, predicted_coords: Optional[Tuple[float, float]]
|
53 |
) -> Optional[float]:
|
@@ -99,7 +80,9 @@ class MapGuesserBenchmark:
|
|
99 |
all_results = []
|
100 |
for model_name in models_to_test:
|
101 |
print(f"\n🤖 Testing model: {model_name}")
|
102 |
-
|
|
|
|
|
103 |
|
104 |
try:
|
105 |
with GeoBot(
|
|
|
9 |
import math
|
10 |
|
11 |
from geo_bot import GeoBot
|
12 |
+
from config import get_data_paths, MODELS_CONFIG, SUCCESS_THRESHOLD_KM, get_model_class
|
13 |
|
14 |
|
15 |
class MapGuesserBenchmark:
|
|
|
29 |
except Exception:
|
30 |
return []
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def calculate_distance(
|
33 |
self, true_coords: Dict, predicted_coords: Optional[Tuple[float, float]]
|
34 |
) -> Optional[float]:
|
|
|
80 |
all_results = []
|
81 |
for model_name in models_to_test:
|
82 |
print(f"\n🤖 Testing model: {model_name}")
|
83 |
+
model_config = MODELS_CONFIG[model_name]
|
84 |
+
model_class = get_model_class(model_config["class"])
|
85 |
+
model_class_name = model_config["model_name"]
|
86 |
|
87 |
try:
|
88 |
with GeoBot(
|
config.py
CHANGED
@@ -1,5 +1,10 @@
|
|
1 |
# Configuration file for MapCrunch benchmark
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
SUCCESS_THRESHOLD_KM = 100
|
4 |
|
5 |
# MapCrunch settings
|
@@ -42,10 +47,15 @@ MODELS_CONFIG = {
|
|
42 |
"model_name": "gpt-4o-mini",
|
43 |
"description": "OpenAI GPT-4o Mini",
|
44 |
},
|
45 |
-
"claude-3
|
|
|
|
|
|
|
|
|
|
|
46 |
"class": "ChatAnthropic",
|
47 |
-
"model_name": "claude-
|
48 |
-
"description": "Anthropic Claude
|
49 |
},
|
50 |
"gemini-1.5-pro": {
|
51 |
"class": "ChatGoogleGenerativeAI",
|
@@ -62,18 +72,93 @@ MODELS_CONFIG = {
|
|
62 |
"model_name": "gemini-2.5-pro-preview-06-05",
|
63 |
"description": "Google Gemini 2.5 Pro",
|
64 |
},
|
65 |
-
"
|
66 |
-
"class": "
|
67 |
-
"model_name": "
|
68 |
-
"description": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
},
|
70 |
-
"qwen2-vl-
|
71 |
-
"class": "
|
72 |
-
"model_name": "
|
73 |
-
"description": "Qwen2
|
74 |
},
|
75 |
}
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# Data paths - now supports named datasets
|
78 |
def get_data_paths(dataset_name: str = "default"):
|
79 |
"""Get data paths for a specific dataset"""
|
@@ -83,5 +168,6 @@ def get_data_paths(dataset_name: str = "default"):
|
|
83 |
"results": f"results/{dataset_name}/",
|
84 |
}
|
85 |
|
|
|
86 |
# Backward compatibility - default paths
|
87 |
DATA_PATHS = get_data_paths("default")
|
|
|
1 |
# Configuration file for MapCrunch benchmark
|
2 |
|
3 |
+
from pydantic import SecretStr, Field
|
4 |
+
from typing import Optional
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
SUCCESS_THRESHOLD_KM = 100
|
9 |
|
10 |
# MapCrunch settings
|
|
|
47 |
"model_name": "gpt-4o-mini",
|
48 |
"description": "OpenAI GPT-4o Mini",
|
49 |
},
|
50 |
+
"claude-3-7-sonnet": {
|
51 |
+
"class": "ChatAnthropic",
|
52 |
+
"model_name": "claude-3-7-sonnet-20250219",
|
53 |
+
"description": "Anthropic Claude 3.7 Sonnet",
|
54 |
+
},
|
55 |
+
"claude-4-sonnet": {
|
56 |
"class": "ChatAnthropic",
|
57 |
+
"model_name": "claude-4-sonnet-20250514",
|
58 |
+
"description": "Anthropic Claude 4 Sonnet",
|
59 |
},
|
60 |
"gemini-1.5-pro": {
|
61 |
"class": "ChatGoogleGenerativeAI",
|
|
|
72 |
"model_name": "gemini-2.5-pro-preview-06-05",
|
73 |
"description": "Google Gemini 2.5 Pro",
|
74 |
},
|
75 |
+
"qwen-vl-max": {
|
76 |
+
"class": "OpenRouter",
|
77 |
+
"model_name": "qwen/qwen-vl-max",
|
78 |
+
"description": "Qwen VL Max - OpenRouter (Best Performance)",
|
79 |
+
},
|
80 |
+
"qwen2.5-vl-32b-free": {
|
81 |
+
"class": "OpenRouter",
|
82 |
+
"model_name": "qwen/qwen2.5-vl-32b-instruct:free",
|
83 |
+
"description": "Qwen2.5 VL 32B - OpenRouter (FREE!)",
|
84 |
+
},
|
85 |
+
"qwen2.5-vl-7b": {
|
86 |
+
"class": "OpenRouter",
|
87 |
+
"model_name": "qwen/qwen2.5-vl-7b-instruct",
|
88 |
+
"description": "Qwen2.5 VL 7B - OpenRouter",
|
89 |
},
|
90 |
+
"qwen2.5-vl-3b": {
|
91 |
+
"class": "OpenRouter",
|
92 |
+
"model_name": "qwen/qwen2.5-vl-3b-instruct",
|
93 |
+
"description": "Qwen2.5 VL 3B - OpenRouter (Fastest)",
|
94 |
},
|
95 |
}
|
96 |
|
97 |
+
POSSIBLE_API_KEYS = [
|
98 |
+
"OPENAI_API_KEY",
|
99 |
+
"ANTHROPIC_API_KEY",
|
100 |
+
"GOOGLE_API_KEY",
|
101 |
+
"HF_TOKEN",
|
102 |
+
"OPENROUTER_API_KEY",
|
103 |
+
]
|
104 |
+
|
105 |
+
|
106 |
+
def setup_environment_variables(st_secrets=None):
|
107 |
+
for key in POSSIBLE_API_KEYS:
|
108 |
+
# Try Streamlit secrets first if provided
|
109 |
+
if st_secrets and key in st_secrets:
|
110 |
+
os.environ[key] = st_secrets[key]
|
111 |
+
elif key in os.environ:
|
112 |
+
continue
|
113 |
+
|
114 |
+
|
115 |
+
def get_model_class(class_name):
|
116 |
+
"""Get actual model class from string name"""
|
117 |
+
if class_name == "ChatOpenAI":
|
118 |
+
from langchain_openai import ChatOpenAI
|
119 |
+
|
120 |
+
return ChatOpenAI
|
121 |
+
elif class_name == "ChatAnthropic":
|
122 |
+
from langchain_anthropic import ChatAnthropic
|
123 |
+
|
124 |
+
return ChatAnthropic
|
125 |
+
elif class_name == "ChatGoogleGenerativeAI":
|
126 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
127 |
+
|
128 |
+
return ChatGoogleGenerativeAI
|
129 |
+
elif class_name == "HuggingFaceChat":
|
130 |
+
from hf_chat import HuggingFaceChat
|
131 |
+
|
132 |
+
return HuggingFaceChat
|
133 |
+
elif class_name == "OpenRouter":
|
134 |
+
from langchain_openai import ChatOpenAI
|
135 |
+
from langchain_core.utils.utils import secret_from_env
|
136 |
+
|
137 |
+
# LangChain does not support OpenRouter directly, so we need to create a custom class
|
138 |
+
# See https://github.com/langchain-ai/langchain/discussions/27964.
|
139 |
+
class ChatOpenRouter(ChatOpenAI):
|
140 |
+
openai_api_key: Optional[SecretStr] = Field(
|
141 |
+
alias="api_key",
|
142 |
+
default_factory=secret_from_env("OPENROUTER_API_KEY", default=None),
|
143 |
+
)
|
144 |
+
|
145 |
+
@property
|
146 |
+
def lc_secrets(self) -> dict[str, str]:
|
147 |
+
return {"openai_api_key": "OPENROUTER_API_KEY"}
|
148 |
+
|
149 |
+
def __init__(self, openai_api_key: Optional[str] = None, **kwargs):
|
150 |
+
openai_api_key = openai_api_key or os.environ.get("OPENROUTER_API_KEY")
|
151 |
+
super().__init__(
|
152 |
+
base_url="https://openrouter.ai/api/v1",
|
153 |
+
api_key=SecretStr(openai_api_key) if openai_api_key else None,
|
154 |
+
**kwargs,
|
155 |
+
)
|
156 |
+
|
157 |
+
return ChatOpenRouter
|
158 |
+
else:
|
159 |
+
raise ValueError(f"Unknown model class: {class_name}")
|
160 |
+
|
161 |
+
|
162 |
# Data paths - now supports named datasets
|
163 |
def get_data_paths(dataset_name: str = "default"):
|
164 |
"""Get data paths for a specific dataset"""
|
|
|
168 |
"results": f"results/{dataset_name}/",
|
169 |
}
|
170 |
|
171 |
+
|
172 |
# Backward compatibility - default paths
|
173 |
DATA_PATHS = get_data_paths("default")
|
geo_bot.py
CHANGED
@@ -6,13 +6,7 @@ from typing import Tuple, List, Optional, Dict, Any, Type
|
|
6 |
|
7 |
from PIL import Image
|
8 |
from langchain_core.messages import HumanMessage, BaseMessage
|
9 |
-
from langchain_core.language_models.chat_models import BaseChatModel
|
10 |
-
from langchain_openai import ChatOpenAI
|
11 |
-
from langchain_anthropic import ChatAnthropic
|
12 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
13 |
-
|
14 |
from hf_chat import HuggingFaceChat
|
15 |
-
|
16 |
from mapcrunch_controller import MapCrunchController
|
17 |
|
18 |
# The "Golden" Prompt (v7): add more descprtions in context and task
|
|
|
6 |
|
7 |
from PIL import Image
|
8 |
from langchain_core.messages import HumanMessage, BaseMessage
|
|
|
|
|
|
|
|
|
|
|
9 |
from hf_chat import HuggingFaceChat
|
|
|
10 |
from mapcrunch_controller import MapCrunchController
|
11 |
|
12 |
# The "Golden" Prompt (v7): add more descprtions in context and task
|
main.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
import argparse
|
2 |
import json
|
3 |
-
import random
|
4 |
-
from typing import Dict, Optional, List
|
5 |
-
|
6 |
-
from langchain_openai import ChatOpenAI
|
7 |
-
from langchain_anthropic import ChatAnthropic
|
8 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
|
10 |
from geo_bot import GeoBot
|
11 |
from benchmark import MapGuesserBenchmark
|
12 |
from data_collector import DataCollector
|
13 |
-
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
|
14 |
|
15 |
|
16 |
def agent_mode(
|
@@ -48,7 +42,7 @@ def agent_mode(
|
|
48 |
print(f"Will run on {len(test_samples)} samples from dataset '{dataset_name}'.")
|
49 |
|
50 |
config = MODELS_CONFIG.get(model_name)
|
51 |
-
model_class =
|
52 |
model_instance_name = config["model_name"]
|
53 |
|
54 |
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=True)
|
|
|
1 |
import argparse
|
2 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
from geo_bot import GeoBot
|
5 |
from benchmark import MapGuesserBenchmark
|
6 |
from data_collector import DataCollector
|
7 |
+
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM, get_model_class
|
8 |
|
9 |
|
10 |
def agent_mode(
|
|
|
42 |
print(f"Will run on {len(test_samples)} samples from dataset '{dataset_name}'.")
|
43 |
|
44 |
config = MODELS_CONFIG.get(model_name)
|
45 |
+
model_class = get_model_class(config["class"])
|
46 |
model_instance_name = config["model_name"]
|
47 |
|
48 |
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=True)
|