Spaces:
Running
Running
add test mode to huggingface UI
Browse filesadd test mode
Update config.py
add test mode
add test mode
- app.py +307 -207
- config.py +2 -2
- experiment_runner.py +0 -0
- geo_bot.py +165 -0
- mapcrunch_controller.py +10 -0
app.py
CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
|
|
2 |
import json
|
3 |
import os
|
4 |
import time
|
|
|
|
|
5 |
import re
|
6 |
from pathlib import Path
|
7 |
|
@@ -67,7 +69,7 @@ with st.sidebar:
|
|
67 |
st.header("Configuration")
|
68 |
|
69 |
# Mode selection
|
70 |
-
mode = st.radio("Mode", ["Dataset Mode", "Online Mode"], index=0)
|
71 |
|
72 |
if mode == "Dataset Mode":
|
73 |
# Get available datasets and ensure we have a valid default
|
@@ -114,6 +116,43 @@ with st.sidebar:
|
|
114 |
num_samples = st.slider(
|
115 |
"Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
|
116 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
else: # Online Mode
|
118 |
st.info("Enter a URL to analyze a specific location")
|
119 |
|
@@ -211,221 +250,282 @@ with st.sidebar:
|
|
211 |
help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
|
212 |
)
|
213 |
|
|
|
214 |
start_button = st.button("π Start", type="primary")
|
215 |
|
216 |
# Main Logic
|
217 |
if start_button:
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
# Display screenshot
|
274 |
-
st.image(
|
275 |
-
step_info["screenshot_bytes"],
|
276 |
-
caption=f"What AI sees - Step {step_num}",
|
277 |
-
use_column_width=True,
|
278 |
-
)
|
279 |
-
|
280 |
-
with col2:
|
281 |
-
# Show available actions
|
282 |
-
st.write("**Available Actions:**")
|
283 |
-
st.code(
|
284 |
-
json.dumps(step_info["available_actions"], indent=2)
|
285 |
-
)
|
286 |
-
|
287 |
-
# Show history context - use the history from step_info
|
288 |
-
current_history = step_info.get("history", [])
|
289 |
-
history_text = bot.generate_history_text(current_history)
|
290 |
-
st.write("**AI Context:**")
|
291 |
-
st.text_area(
|
292 |
-
"History",
|
293 |
-
history_text,
|
294 |
-
height=100,
|
295 |
-
disabled=True,
|
296 |
-
key=f"history_{i}_{step_num}",
|
297 |
-
)
|
298 |
-
|
299 |
-
# Show AI reasoning and action
|
300 |
-
action = step_info.get("action_details", {}).get(
|
301 |
-
"action", "N/A"
|
302 |
-
)
|
303 |
-
|
304 |
-
if step_info.get("is_final_step") and action != "GUESS":
|
305 |
-
st.warning("Max steps reached. Forcing GUESS.")
|
306 |
-
|
307 |
-
st.write("**AI Reasoning:**")
|
308 |
-
st.info(step_info.get("reasoning", "N/A"))
|
309 |
-
if step_info.get("debug_message") != "N/A":
|
310 |
-
st.write("**AI Debug Message:**")
|
311 |
-
st.code(step_info.get("debug_message"), language="json")
|
312 |
-
st.write("**AI Action:**")
|
313 |
-
if action == "GUESS":
|
314 |
-
lat = step_info.get("action_details", {}).get("lat")
|
315 |
-
lon = step_info.get("action_details", {}).get("lon")
|
316 |
-
st.success(f"`{action}` - {lat:.4f}, {lon:.4f}")
|
317 |
-
else:
|
318 |
-
st.success(f"`{action}`")
|
319 |
-
|
320 |
-
# Show decision details for debugging
|
321 |
-
with st.expander("Decision Details"):
|
322 |
-
decision_data = {
|
323 |
-
"reasoning": step_info.get("reasoning"),
|
324 |
-
"action_details": step_info.get("action_details"),
|
325 |
-
"remaining_steps": step_info.get("remaining_steps"),
|
326 |
-
}
|
327 |
-
st.json(decision_data)
|
328 |
-
|
329 |
-
# Force UI refresh
|
330 |
-
time.sleep(0.5) # Small delay to ensure UI updates are visible
|
331 |
-
|
332 |
-
# Run the agent loop with UI callback
|
333 |
-
try:
|
334 |
-
final_guess = bot.run_agent_loop(
|
335 |
-
max_steps=steps_per_sample, step_callback=ui_step_callback
|
336 |
-
)
|
337 |
-
except Exception as e:
|
338 |
-
st.error(f"Error during agent execution: {e}")
|
339 |
-
final_guess = None
|
340 |
-
|
341 |
-
# Sample Results
|
342 |
-
with sample_container:
|
343 |
-
st.subheader("Sample Result")
|
344 |
-
true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
|
345 |
-
distance_km = None
|
346 |
-
is_success = False
|
347 |
-
|
348 |
-
if final_guess:
|
349 |
-
distance_km = benchmark_helper.calculate_distance(
|
350 |
-
true_coords, final_guess
|
351 |
-
)
|
352 |
-
if distance_km is not None:
|
353 |
-
is_success = distance_km <= SUCCESS_THRESHOLD_KM
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
)
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
)
|
368 |
-
else:
|
369 |
-
st.error("No final guess made")
|
370 |
-
|
371 |
-
all_results.append(
|
372 |
-
{
|
373 |
-
"sample_id": sample.get("id"),
|
374 |
-
"model": model_choice,
|
375 |
-
"steps_taken": len(sample_steps_data),
|
376 |
-
"max_steps": steps_per_sample,
|
377 |
-
"temperature": temperature,
|
378 |
-
"true_coordinates": true_coords,
|
379 |
-
"predicted_coordinates": final_guess,
|
380 |
-
"distance_km": distance_km,
|
381 |
-
"success": is_success,
|
382 |
-
}
|
383 |
-
)
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
|
430 |
|
431 |
def handle_tab_completion():
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import time
|
5 |
+
import pandas as pd
|
6 |
+
import altair as alt
|
7 |
import re
|
8 |
from pathlib import Path
|
9 |
|
|
|
69 |
st.header("Configuration")
|
70 |
|
71 |
# Mode selection
|
72 |
+
mode = st.radio("Mode", ["Dataset Mode", "Online Mode", "Test Mode"], index=0)
|
73 |
|
74 |
if mode == "Dataset Mode":
|
75 |
# Get available datasets and ensure we have a valid default
|
|
|
116 |
num_samples = st.slider(
|
117 |
"Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
|
118 |
)
|
119 |
+
|
120 |
+
elif mode == "Test Mode":
|
121 |
+
st.info("π¬ Multi-Model Benchmark Testing")
|
122 |
+
available_datasets = get_available_datasets()
|
123 |
+
dataset_choice = st.selectbox("Dataset", available_datasets, index=0)
|
124 |
+
|
125 |
+
selected_models = st.multiselect(
|
126 |
+
"Select Models to Compare",
|
127 |
+
list(MODELS_CONFIG.keys()),
|
128 |
+
default=[DEFAULT_MODEL],
|
129 |
+
)
|
130 |
+
if not selected_models:
|
131 |
+
st.warning("Please select at least one model to run the test.")
|
132 |
+
st.stop()
|
133 |
+
|
134 |
+
steps_per_sample = st.slider("Max Steps", 1, 50, 10)
|
135 |
+
temperature = st.slider(
|
136 |
+
"Temperature",
|
137 |
+
0.0,
|
138 |
+
2.0,
|
139 |
+
DEFAULT_TEMPERATURE,
|
140 |
+
0.1,
|
141 |
+
help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
|
142 |
+
)
|
143 |
+
|
144 |
+
# load dataset
|
145 |
+
data_paths = get_data_paths(dataset_choice)
|
146 |
+
try:
|
147 |
+
with open(data_paths["golden_labels"], "r") as f:
|
148 |
+
golden_labels = json.load(f).get("samples", [])
|
149 |
+
st.success(f"Dataset '{dataset_choice}' loaded with {len(golden_labels)} samples")
|
150 |
+
except Exception as e:
|
151 |
+
st.error(f"Error loading dataset '{dataset_choice}': {str(e)}")
|
152 |
+
st.stop()
|
153 |
+
num_samples = st.slider("Samples per Run", 1, len(golden_labels), min(10, len(golden_labels)))
|
154 |
+
runs_per_model = st.slider("Runs per Model", 1, 10, 5)
|
155 |
+
|
156 |
else: # Online Mode
|
157 |
st.info("Enter a URL to analyze a specific location")
|
158 |
|
|
|
250 |
help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
|
251 |
)
|
252 |
|
253 |
+
# common start button
|
254 |
start_button = st.button("π Start", type="primary")
|
255 |
|
256 |
# Main Logic
|
257 |
if start_button:
|
258 |
+
if mode == "Test Mode":
|
259 |
+
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
|
260 |
+
summary_by_step = {}
|
261 |
+
progress_bar = st.progress(0)
|
262 |
+
for mi, model_name in enumerate(selected_models):
|
263 |
+
st.header(f"Model: {model_name}")
|
264 |
+
config = MODELS_CONFIG[model_name]
|
265 |
+
model_class = get_model_class(config["class"])
|
266 |
+
|
267 |
+
successes_per_step = [0]*steps_per_sample
|
268 |
+
total_iterations = runs_per_model * num_samples
|
269 |
+
model_bar = st.progress(0, text=f"Running {model_name}")
|
270 |
+
iteration_counter = 0
|
271 |
+
for run_idx in range(runs_per_model):
|
272 |
+
with GeoBot(model=model_class, model_name=config["model_name"], headless=True, temperature=temperature) as bot:
|
273 |
+
for si, sample in enumerate(golden_labels[:num_samples]):
|
274 |
+
if not bot.controller.load_location_from_data(sample):
|
275 |
+
iteration_counter += 1
|
276 |
+
model_bar.progress(iteration_counter/total_iterations)
|
277 |
+
continue
|
278 |
+
predictions = bot.test_run_agent_loop(max_steps=steps_per_sample)
|
279 |
+
true_coords = {"lat": sample["lat"], "lng": sample["lng"]}
|
280 |
+
for step_idx, pred in enumerate(predictions):
|
281 |
+
if isinstance(pred, dict) and "lat" in pred:
|
282 |
+
dist = benchmark_helper.calculate_distance(true_coords, (pred["lat"], pred["lon"]))
|
283 |
+
if dist is not None and dist <= SUCCESS_THRESHOLD_KM:
|
284 |
+
successes_per_step[step_idx] += 1
|
285 |
+
iteration_counter += 1
|
286 |
+
model_bar.progress(iteration_counter/total_iterations)
|
287 |
+
# calculate accuracy per step
|
288 |
+
acc_per_step = [s/(num_samples*runs_per_model) for s in successes_per_step]
|
289 |
+
summary_by_step[model_name] = acc_per_step
|
290 |
+
progress_bar.progress((mi+1)/len(selected_models))
|
291 |
+
# plot
|
292 |
+
st.subheader("Accuracy vs Steps")
|
293 |
+
|
294 |
+
# summary_by_step {model: [acc_step1, acc_step2, ...]}
|
295 |
+
df_wide = pd.DataFrame(summary_by_step)
|
296 |
+
df_long = (
|
297 |
+
df_wide
|
298 |
+
.reset_index(names="Step")
|
299 |
+
.melt(id_vars="Step", var_name="Model", value_name="Accuracy")
|
300 |
+
)
|
301 |
|
302 |
+
chart = (
|
303 |
+
alt.Chart(df_long)
|
304 |
+
.mark_line(point=True)
|
305 |
+
.encode(
|
306 |
+
x=alt.X("Step:O", title="Step #"),
|
307 |
+
y=alt.Y("Accuracy:Q", title="Accuracy", scale=alt.Scale(domain=[0, 1])),
|
308 |
+
color=alt.Color("Model:N", title="Model"),
|
309 |
+
tooltip=["Model:N", "Step:O", alt.Tooltip("Accuracy:Q", format=".2%")],
|
310 |
+
)
|
311 |
+
.properties(width=700, height=400)
|
312 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
st.altair_chart(chart, use_container_width=True)
|
315 |
+
st.stop()
|
316 |
+
|
317 |
+
else:
|
318 |
+
test_samples = golden_labels[:num_samples]
|
319 |
+
config = MODELS_CONFIG[model_choice]
|
320 |
+
model_class = get_model_class(config["class"])
|
321 |
+
|
322 |
+
benchmark_helper = MapGuesserBenchmark(
|
323 |
+
dataset_name=dataset_choice if mode == "Dataset Mode" else "online"
|
324 |
+
)
|
325 |
+
all_results = []
|
326 |
+
|
327 |
+
progress_bar = st.progress(0)
|
328 |
+
|
329 |
+
with GeoBot(
|
330 |
+
model=model_class,
|
331 |
+
model_name=config["model_name"],
|
332 |
+
headless=True,
|
333 |
+
temperature=temperature,
|
334 |
+
) as bot:
|
335 |
+
for i, sample in enumerate(test_samples):
|
336 |
+
st.divider()
|
337 |
+
st.header(f"Sample {i + 1}/{num_samples}")
|
338 |
+
|
339 |
+
if mode == "Online Mode":
|
340 |
+
# Load the MapCrunch URL directly
|
341 |
+
bot.controller.load_url(sample["url"])
|
342 |
+
else:
|
343 |
+
# Load from dataset as before
|
344 |
+
bot.controller.load_location_from_data(sample)
|
345 |
+
|
346 |
+
bot.controller.setup_clean_environment()
|
347 |
+
|
348 |
+
# Create containers for UI updates
|
349 |
+
sample_container = st.container()
|
350 |
+
|
351 |
+
# Initialize UI state for this sample
|
352 |
+
step_containers = {}
|
353 |
+
sample_steps_data = []
|
354 |
+
|
355 |
+
def ui_step_callback(step_info):
|
356 |
+
"""Callback function to update UI after each step"""
|
357 |
+
step_num = step_info["step_num"]
|
358 |
+
|
359 |
+
# Store step data
|
360 |
+
sample_steps_data.append(step_info)
|
361 |
+
|
362 |
+
with sample_container:
|
363 |
+
# Create step container if it doesn't exist
|
364 |
+
if step_num not in step_containers:
|
365 |
+
step_containers[step_num] = st.container()
|
366 |
+
|
367 |
+
with step_containers[step_num]:
|
368 |
+
st.subheader(f"Step {step_num}/{step_info['max_steps']}")
|
369 |
+
|
370 |
+
col1, col2 = st.columns([1, 2])
|
371 |
+
|
372 |
+
with col1:
|
373 |
+
# Display screenshot
|
374 |
+
st.image(
|
375 |
+
step_info["screenshot_bytes"],
|
376 |
+
caption=f"What AI sees - Step {step_num}",
|
377 |
+
use_column_width=True,
|
378 |
+
)
|
379 |
+
|
380 |
+
with col2:
|
381 |
+
# Show available actions
|
382 |
+
st.write("**Available Actions:**")
|
383 |
+
st.code(
|
384 |
+
json.dumps(step_info["available_actions"], indent=2)
|
385 |
+
)
|
386 |
+
|
387 |
+
# Show history context - use the history from step_info
|
388 |
+
current_history = step_info.get("history", [])
|
389 |
+
history_text = bot.generate_history_text(current_history)
|
390 |
+
st.write("**AI Context:**")
|
391 |
+
st.text_area(
|
392 |
+
"History",
|
393 |
+
history_text,
|
394 |
+
height=100,
|
395 |
+
disabled=True,
|
396 |
+
key=f"history_{i}_{step_num}",
|
397 |
+
)
|
398 |
+
|
399 |
+
# Show AI reasoning and action
|
400 |
+
action = step_info.get("action_details", {}).get(
|
401 |
+
"action", "N/A"
|
402 |
+
)
|
403 |
+
|
404 |
+
if step_info.get("is_final_step") and action != "GUESS":
|
405 |
+
st.warning("Max steps reached. Forcing GUESS.")
|
406 |
+
|
407 |
+
st.write("**AI Reasoning:**")
|
408 |
+
st.info(step_info.get("reasoning", "N/A"))
|
409 |
+
if step_info.get("debug_message") != "N/A":
|
410 |
+
st.write("**AI Debug Message:**")
|
411 |
+
st.code(step_info.get("debug_message"), language="json")
|
412 |
+
st.write("**AI Action:**")
|
413 |
+
if action == "GUESS":
|
414 |
+
lat = step_info.get("action_details", {}).get("lat")
|
415 |
+
lon = step_info.get("action_details", {}).get("lon")
|
416 |
+
st.success(f"`{action}` - {lat:.4f}, {lon:.4f}")
|
417 |
+
else:
|
418 |
+
st.success(f"`{action}`")
|
419 |
+
|
420 |
+
# Show decision details for debugging
|
421 |
+
with st.expander("Decision Details"):
|
422 |
+
decision_data = {
|
423 |
+
"reasoning": step_info.get("reasoning"),
|
424 |
+
"action_details": step_info.get("action_details"),
|
425 |
+
"remaining_steps": step_info.get("remaining_steps"),
|
426 |
+
}
|
427 |
+
st.json(decision_data)
|
428 |
+
|
429 |
+
# Force UI refresh
|
430 |
+
time.sleep(0.5) # Small delay to ensure UI updates are visible
|
431 |
+
|
432 |
+
# Run the agent loop with UI callback
|
433 |
+
try:
|
434 |
+
final_guess = bot.run_agent_loop(
|
435 |
+
max_steps=steps_per_sample, step_callback=ui_step_callback
|
436 |
)
|
437 |
+
except Exception as e:
|
438 |
+
st.error(f"Error during agent execution: {e}")
|
439 |
+
final_guess = None
|
440 |
+
|
441 |
+
# Sample Results
|
442 |
+
with sample_container:
|
443 |
+
st.subheader("Sample Result")
|
444 |
+
true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
|
445 |
+
distance_km = None
|
446 |
+
is_success = False
|
447 |
+
|
448 |
+
if final_guess:
|
449 |
+
distance_km = benchmark_helper.calculate_distance(
|
450 |
+
true_coords, final_guess
|
451 |
+
)
|
452 |
+
if distance_km is not None:
|
453 |
+
is_success = distance_km <= SUCCESS_THRESHOLD_KM
|
454 |
+
|
455 |
+
col1, col2, col3 = st.columns(3)
|
456 |
+
col1.metric(
|
457 |
+
"Final Guess", f"{final_guess[0]:.3f}, {final_guess[1]:.3f}"
|
458 |
+
)
|
459 |
+
col2.metric(
|
460 |
+
"Ground Truth",
|
461 |
+
f"{true_coords['lat']:.3f}, {true_coords['lng']:.3f}",
|
462 |
+
)
|
463 |
+
col3.metric(
|
464 |
+
"Distance",
|
465 |
+
f"{distance_km:.1f} km",
|
466 |
+
delta="Success" if is_success else "Failed",
|
467 |
+
)
|
468 |
+
else:
|
469 |
+
st.error("No final guess made")
|
470 |
+
|
471 |
+
all_results.append(
|
472 |
+
{
|
473 |
+
"sample_id": sample.get("id"),
|
474 |
+
"model": model_choice,
|
475 |
+
"steps_taken": len(sample_steps_data),
|
476 |
+
"max_steps": steps_per_sample,
|
477 |
+
"temperature": temperature,
|
478 |
+
"true_coordinates": true_coords,
|
479 |
+
"predicted_coordinates": final_guess,
|
480 |
+
"distance_km": distance_km,
|
481 |
+
"success": is_success,
|
482 |
+
}
|
483 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
|
485 |
+
progress_bar.progress((i + 1) / num_samples)
|
486 |
+
|
487 |
+
# Final Summary
|
488 |
+
st.divider()
|
489 |
+
st.header("π Final Results")
|
490 |
+
|
491 |
+
# Calculate summary stats
|
492 |
+
successes = [r for r in all_results if r["success"]]
|
493 |
+
success_rate = len(successes) / len(all_results) if all_results else 0
|
494 |
+
|
495 |
+
valid_distances = [
|
496 |
+
r["distance_km"] for r in all_results if r["distance_km"] is not None
|
497 |
+
]
|
498 |
+
avg_distance = sum(valid_distances) / len(valid_distances) if valid_distances else 0
|
499 |
+
|
500 |
+
# Overall metrics
|
501 |
+
col1, col2, col3 = st.columns(3)
|
502 |
+
col1.metric("Success Rate", f"{success_rate * 100:.1f}%")
|
503 |
+
col2.metric("Average Distance", f"{avg_distance:.1f} km")
|
504 |
+
col3.metric("Total Samples", len(all_results))
|
505 |
+
|
506 |
+
# Detailed results table
|
507 |
+
st.subheader("Detailed Results")
|
508 |
+
st.dataframe(all_results, use_container_width=True)
|
509 |
+
|
510 |
+
# Success/failure breakdown
|
511 |
+
if successes:
|
512 |
+
st.subheader("β
Successful Samples")
|
513 |
+
st.dataframe(successes, use_container_width=True)
|
514 |
+
|
515 |
+
failures = [r for r in all_results if not r["success"]]
|
516 |
+
if failures:
|
517 |
+
st.subheader("β Failed Samples")
|
518 |
+
st.dataframe(failures, use_container_width=True)
|
519 |
+
|
520 |
+
# Export functionality
|
521 |
+
if st.button("πΎ Export Results"):
|
522 |
+
results_json = json.dumps(all_results, indent=2)
|
523 |
+
st.download_button(
|
524 |
+
label="Download results.json",
|
525 |
+
data=results_json,
|
526 |
+
file_name=f"geo_results_{dataset_choice}_{model_choice}_{num_samples}samples.json",
|
527 |
+
mime="application/json",
|
528 |
+
)
|
529 |
|
530 |
|
531 |
def handle_tab_completion():
|
config.py
CHANGED
@@ -38,12 +38,12 @@ DEFAULT_TEMPERATURE = 1.0
|
|
38 |
# Model configurations
|
39 |
MODELS_CONFIG = {
|
40 |
"gpt-4o": {
|
41 |
-
"class": "
|
42 |
"model_name": "gpt-4o",
|
43 |
"description": "OpenAI GPT-4o",
|
44 |
},
|
45 |
"gpt-4o-mini": {
|
46 |
-
"class": "
|
47 |
"model_name": "gpt-4o-mini",
|
48 |
"description": "OpenAI GPT-4o Mini",
|
49 |
},
|
|
|
38 |
# Model configurations
|
39 |
MODELS_CONFIG = {
|
40 |
"gpt-4o": {
|
41 |
+
"class": "OpenRouter",
|
42 |
"model_name": "gpt-4o",
|
43 |
"description": "OpenAI GPT-4o",
|
44 |
},
|
45 |
"gpt-4o-mini": {
|
46 |
+
"class": "OpenRouter",
|
47 |
"model_name": "gpt-4o-mini",
|
48 |
"description": "OpenAI GPT-4o Mini",
|
49 |
},
|
experiment_runner.py
ADDED
File without changes
|
geo_bot.py
CHANGED
@@ -69,6 +69,72 @@ Your response MUST be a valid JSON object wrapped in ```json ... ```.
|
|
69 |
```
|
70 |
"""
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
BENCHMARK_PROMPT = """
|
73 |
Analyze the image and determine its geographic coordinates.
|
74 |
1. Describe visual clues.
|
@@ -255,6 +321,49 @@ class GeoBot:
|
|
255 |
|
256 |
return decision
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
def execute_action(self, action: str) -> bool:
|
259 |
"""
|
260 |
Execute the given action using the controller.
|
@@ -272,6 +381,62 @@ class GeoBot:
|
|
272 |
self.controller.pan_view("right")
|
273 |
return True
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
def run_agent_loop(
|
276 |
self, max_steps: int = 10, step_callback=None
|
277 |
) -> Optional[Tuple[float, float]]:
|
|
|
69 |
```
|
70 |
"""
|
71 |
|
72 |
+
TEST_AGENT_PROMPT_TEMPLATE = """
|
73 |
+
**Mission:** You are an expert geo-location agent. Your goal is to pinpoint our position based on the surroundings and your observation history.
|
74 |
+
|
75 |
+
**Current Status**
|
76 |
+
β’ Actions You Can Take *this* turn: {available_actions}
|
77 |
+
|
78 |
+
ββββββββββββββββββββββββββββββββ
|
79 |
+
**Core Principles**
|
80 |
+
|
81 |
+
1. **Observe β Orient β Act**
|
82 |
+
Start each turn with a structured three-part reasoning block:
|
83 |
+
**(1) Visual Clues β** plainly describe what you see (signs, text language, road lines, vegetation, building styles, vehicles, terrain, weather, etc.).
|
84 |
+
**(2) Potential Regions β** list the most plausible regions/countries those clues suggest.
|
85 |
+
**(3) Most Probable + Plan β** pick the single likeliest region and explain the next action (move/pan or guess).
|
86 |
+
|
87 |
+
2. **Navigate with Labels:**
|
88 |
+
- `MOVE_FORWARD` follows the green **UP** arrow.
|
89 |
+
- `MOVE_BACKWARD` follows the red **DOWN** arrow.
|
90 |
+
- No arrow β you cannot move that way.
|
91 |
+
|
92 |
+
3. **Efficient Exploration:**
|
93 |
+
- **Pan Before You Move:** At fresh spots/intersections, use `PAN_LEFT` / `PAN_RIGHT` first.
|
94 |
+
- After ~2 or 3 fruitless moves in repetitive scenery, turn around.
|
95 |
+
|
96 |
+
4. **Be Decisive:** A unique, definitive clue (full address, rare town name, etc.) β `GUESS` immediately.
|
97 |
+
|
98 |
+
5. **Final-Step Rule:** If **Remaining Steps = 1**, you **MUST** `GUESS` and you should carefully check the image and the surroundings.
|
99 |
+
|
100 |
+
6. **Always Predict:** On EVERY step, provide your current best estimate of the location, even if you're not ready to make a final guess.
|
101 |
+
|
102 |
+
ββββββββββββββββββββββββββββββββ
|
103 |
+
**Context & Task:**
|
104 |
+
Analyze your full journey history and current view, apply the Core Principles, and decide your next action in the required JSON format.
|
105 |
+
|
106 |
+
**Action History**
|
107 |
+
{history_text}
|
108 |
+
|
109 |
+
ββββββββββββββββββββββββββββββββ
|
110 |
+
**JSON Output Format:**
|
111 |
+
Your response MUST be a valid JSON object wrapped in ```json ... ```.
|
112 |
+
{{
|
113 |
+
"reasoning": "β¦",
|
114 |
+
"current_prediction": {{
|
115 |
+
"lat": <float>,
|
116 |
+
"lon": <float>,
|
117 |
+
"location_description": "Brief description of predicted location"
|
118 |
+
}},
|
119 |
+
"action_details": {{"action": action chosen from the available actions}}
|
120 |
+
}}
|
121 |
+
**Example **
|
122 |
+
```json
|
123 |
+
{{
|
124 |
+
"reasoning": "(1) Visual Clues β I see left-side driving, eucalyptus trees, and a yellow speed-warning sign; the road markings are solid white. (2) Potential Regions β Southeastern Australia, Tasmania, or the North Island of New Zealand. (3) Most Probable + Plan β The scene most likely sits in a suburb of Hobart, Tasmania. I will PAN_LEFT to look for additional road signs that confirm this.",
|
125 |
+
"current_prediction": {{
|
126 |
+
"lat": -42.8806,
|
127 |
+
"lon": 147.3250,
|
128 |
+
"location_description": "Hobart suburb, Tasmania, Australia"
|
129 |
+
}},
|
130 |
+
"action_details": {{
|
131 |
+
"action": "PAN_LEFT"
|
132 |
+
}}
|
133 |
+
}}
|
134 |
+
```
|
135 |
+
|
136 |
+
"""
|
137 |
+
|
138 |
BENCHMARK_PROMPT = """
|
139 |
Analyze the image and determine its geographic coordinates.
|
140 |
1. Describe visual clues.
|
|
|
321 |
|
322 |
return decision
|
323 |
|
324 |
+
def execute_test_agent_step(
|
325 |
+
self,
|
326 |
+
history: List[Dict[str, Any]],
|
327 |
+
current_screenshot_b64: str,
|
328 |
+
available_actions: List[str],
|
329 |
+
) -> Optional[Dict[str, Any]]:
|
330 |
+
"""
|
331 |
+
Execute a single agent step: generate prompt, get AI decision, return decision.
|
332 |
+
This is the core step logic extracted for reuse.
|
333 |
+
"""
|
334 |
+
history_text = self.generate_history_text(history)
|
335 |
+
image_b64_for_prompt = self.get_history_images(history) + [
|
336 |
+
current_screenshot_b64
|
337 |
+
]
|
338 |
+
|
339 |
+
prompt = TEST_AGENT_PROMPT_TEMPLATE.format(
|
340 |
+
history_text=history_text,
|
341 |
+
available_actions=available_actions,
|
342 |
+
)
|
343 |
+
|
344 |
+
try:
|
345 |
+
message = self._create_message_with_history(
|
346 |
+
prompt, image_b64_for_prompt[-1:]
|
347 |
+
)
|
348 |
+
response = self.model.invoke(message)
|
349 |
+
decision = self._parse_agent_response(response)
|
350 |
+
except Exception as e:
|
351 |
+
print(f"Error during model invocation: {e}")
|
352 |
+
decision = None
|
353 |
+
|
354 |
+
if not decision:
|
355 |
+
print(
|
356 |
+
"Response parsing failed or model error. Using default recovery action: PAN_RIGHT."
|
357 |
+
)
|
358 |
+
decision = {
|
359 |
+
"reasoning": "Recovery due to parsing failure or model error.",
|
360 |
+
"action_details": {"action": "PAN_RIGHT"},
|
361 |
+
"current_prediction": "N/A",
|
362 |
+
"debug_message": f"{response.content.strip()}",
|
363 |
+
}
|
364 |
+
|
365 |
+
return decision
|
366 |
+
|
367 |
def execute_action(self, action: str) -> bool:
|
368 |
"""
|
369 |
Execute the given action using the controller.
|
|
|
381 |
self.controller.pan_view("right")
|
382 |
return True
|
383 |
|
384 |
+
def test_run_agent_loop(self, max_steps: int = 10, step_callback=None) -> Optional[list[Tuple[float, float]]]:
|
385 |
+
history = self.init_history()
|
386 |
+
predictions = []
|
387 |
+
for step in range(max_steps, 0, -1):
|
388 |
+
# Setup and screenshot
|
389 |
+
self.controller.setup_clean_environment()
|
390 |
+
self.controller.label_arrows_on_screen()
|
391 |
+
|
392 |
+
screenshot_bytes = self.controller.take_street_view_screenshot()
|
393 |
+
if not screenshot_bytes:
|
394 |
+
print("Failed to take screenshot. Ending agent loop.")
|
395 |
+
return None
|
396 |
+
|
397 |
+
current_screenshot_b64 = self.pil_to_base64(
|
398 |
+
image=Image.open(BytesIO(screenshot_bytes))
|
399 |
+
)
|
400 |
+
available_actions = self.controller.get_test_available_actions()
|
401 |
+
print(f"Available actions: {available_actions}")
|
402 |
+
|
403 |
+
|
404 |
+
# Normal step execution
|
405 |
+
decision = self.execute_test_agent_step(
|
406 |
+
history, current_screenshot_b64, available_actions
|
407 |
+
)
|
408 |
+
|
409 |
+
# Create step_info with current history BEFORE adding current step
|
410 |
+
# This shows the history up to (but not including) the current step
|
411 |
+
step_info = {
|
412 |
+
"max_steps": max_steps,
|
413 |
+
"remaining_steps": step,
|
414 |
+
"screenshot_bytes": screenshot_bytes,
|
415 |
+
"screenshot_b64": current_screenshot_b64,
|
416 |
+
"available_actions": available_actions,
|
417 |
+
"is_final_step": step == 1,
|
418 |
+
"reasoning": decision.get("reasoning", "N/A"),
|
419 |
+
"action_details": decision.get("action_details", {"action": "N/A"}),
|
420 |
+
"history": history.copy(), # History up to current step (excluding current)
|
421 |
+
"debug_message": decision.get("debug_message", "N/A"),
|
422 |
+
"current_prediction": decision.get("current_prediction", "N/A"),
|
423 |
+
}
|
424 |
+
|
425 |
+
action_details = decision.get("action_details", {})
|
426 |
+
action = action_details.get("action")
|
427 |
+
print(f"AI Reasoning: {decision.get('reasoning', 'N/A')}")
|
428 |
+
print(f"AI Current Prediction: {decision.get('current_prediction', 'N/A')}")
|
429 |
+
print(f"AI Action: {action}")
|
430 |
+
|
431 |
+
|
432 |
+
# Add step to history AFTER callback (so next iteration has this step in history)
|
433 |
+
self.add_step_to_history(history, current_screenshot_b64, decision)
|
434 |
+
|
435 |
+
predictions.append(decision.get("current_prediction", "N/A"))
|
436 |
+
self.execute_action(action)
|
437 |
+
|
438 |
+
return predictions
|
439 |
+
|
440 |
def run_agent_loop(
|
441 |
self, max_steps: int = 10, step_callback=None
|
442 |
) -> Optional[Tuple[float, float]]:
|
mapcrunch_controller.py
CHANGED
@@ -214,6 +214,16 @@ class MapCrunchController:
|
|
214 |
base_actions.extend(["MOVE_FORWARD", "MOVE_BACKWARD"])
|
215 |
return base_actions
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
def get_current_address(self) -> Optional[str]:
|
218 |
try:
|
219 |
address_element = self.wait.until(
|
|
|
214 |
base_actions.extend(["MOVE_FORWARD", "MOVE_BACKWARD"])
|
215 |
return base_actions
|
216 |
|
217 |
+
def get_test_available_actions(self) -> List[str]:
|
218 |
+
"""
|
219 |
+
Checks for movement links via JavaScript.
|
220 |
+
"""
|
221 |
+
base_actions = ["PAN_LEFT", "PAN_RIGHT"]
|
222 |
+
links = self.driver.execute_script("return window.panorama.getLinks();")
|
223 |
+
if links and len(links) > 0:
|
224 |
+
base_actions.extend(["MOVE_FORWARD", "MOVE_BACKWARD"])
|
225 |
+
return base_actions
|
226 |
+
|
227 |
def get_current_address(self) -> Optional[str]:
|
228 |
try:
|
229 |
address_element = self.wait.until(
|