Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
"""
|
2 |
-
WFGY HuggingFace Space
|
3 |
-
|
4 |
-
*
|
5 |
-
*
|
|
|
|
|
6 |
"""
|
7 |
|
8 |
import base64, io, numpy as np, gradio as gr, wfgy_sdk as w
|
@@ -12,78 +14,121 @@ from wfgy_sdk.visual import plot_histogram
|
|
12 |
import torch
|
13 |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
14 |
|
15 |
-
MODEL = "sshleifer/tiny-gpt2"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
17 |
-
model
|
18 |
set_seed(42)
|
19 |
|
20 |
-
ENGINE = w.get_engine()
|
21 |
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
def wfgy_demo(prompt, enable_wfgy):
|
31 |
-
# ---- generate raw text & logits ----
|
32 |
ids = tokenizer(prompt, return_tensors="pt").input_ids
|
33 |
with torch.no_grad():
|
34 |
output = model(ids)
|
35 |
raw_logits = output.logits[0, -1].cpu().numpy()
|
36 |
|
37 |
-
# dummy semantic vectors
|
38 |
G = np.random.randn(256); G /= np.linalg.norm(G)
|
39 |
I = G + np.random.normal(scale=0.05, size=256)
|
40 |
|
41 |
-
# run WFGY
|
42 |
if enable_wfgy:
|
43 |
-
mod_logits = ENGINE.run(
|
|
|
|
|
|
|
|
|
44 |
else:
|
45 |
mod_logits = raw_logits.copy()
|
46 |
|
47 |
-
# decode
|
48 |
-
|
49 |
-
|
50 |
-
raw_txt = prompt +
|
51 |
-
mod_txt = prompt +
|
52 |
|
53 |
-
# metrics
|
54 |
m = compare_logits(raw_logits, mod_logits)
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
# histogram
|
60 |
fig = plot_histogram(raw_logits, mod_logits, show=False)
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
gr.Markdown("## WFGY Live Demo — variance drop in real-time")
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
with gr.Row():
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
run_btn.click(
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
gr.Markdown(
|
85 |
-
"
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
|
89 |
demo.launch()
|
|
|
1 |
"""
|
2 |
+
WFGY HuggingFace Space — deluxe marketing demo
|
3 |
+
----------------------------------------------
|
4 |
+
* Show before/after text
|
5 |
+
* Display variance drop, KL, top-1 shift
|
6 |
+
* Overlay histogram
|
7 |
+
* Rich Markdown explaining every metric, PDF trick, star goal, secret papers
|
8 |
"""
|
9 |
|
10 |
import base64, io, numpy as np, gradio as gr, wfgy_sdk as w
|
|
|
14 |
import torch
|
15 |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
16 |
|
17 |
+
MODEL = "sshleifer/tiny-gpt2" # fast CPU model
|
18 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL)
|
20 |
set_seed(42)
|
21 |
|
22 |
+
ENGINE = w.get_engine() # singleton
|
23 |
|
24 |
|
25 |
+
# ------------------------------------------------------------
|
26 |
+
# helper: run WFGY or bypass, return text + metrics + img
|
27 |
+
# ------------------------------------------------------------
|
28 |
+
def wfgy_demo(prompt: str, enable_wfgy: bool):
|
29 |
+
if not prompt.strip():
|
30 |
+
return "", "", "", ""
|
31 |
|
32 |
+
# ----- raw logits -----
|
|
|
|
|
33 |
ids = tokenizer(prompt, return_tensors="pt").input_ids
|
34 |
with torch.no_grad():
|
35 |
output = model(ids)
|
36 |
raw_logits = output.logits[0, -1].cpu().numpy()
|
37 |
|
38 |
+
# ----- dummy semantic vectors (demo only) -----
|
39 |
G = np.random.randn(256); G /= np.linalg.norm(G)
|
40 |
I = G + np.random.normal(scale=0.05, size=256)
|
41 |
|
42 |
+
# ----- run or skip WFGY -----
|
43 |
if enable_wfgy:
|
44 |
+
mod_logits = ENGINE.run(
|
45 |
+
input_vec=I,
|
46 |
+
ground_vec=G,
|
47 |
+
logits=raw_logits
|
48 |
+
)
|
49 |
else:
|
50 |
mod_logits = raw_logits.copy()
|
51 |
|
52 |
+
# ----- decode 1-step continuation -----
|
53 |
+
raw_next = tokenizer.decode(int(raw_logits.argmax()))
|
54 |
+
mod_next = tokenizer.decode(int(mod_logits.argmax()))
|
55 |
+
raw_txt = prompt + raw_next
|
56 |
+
mod_txt = prompt + mod_next
|
57 |
|
58 |
+
# ----- metrics -----
|
59 |
m = compare_logits(raw_logits, mod_logits)
|
60 |
+
top1_flag = "✔ changed" if m["top1_shift"] else "✘ unchanged"
|
61 |
+
badge = (
|
62 |
+
f"<b>variance ▼ {(1-m['std_ratio'])*100:.0f}%</b> "
|
63 |
+
f"| <b>KL {m['kl_divergence']:.2f}</b> "
|
64 |
+
f"| top-1 {top1_flag}"
|
65 |
+
)
|
66 |
|
67 |
+
# ----- histogram -----
|
68 |
fig = plot_histogram(raw_logits, mod_logits, show=False)
|
69 |
+
buffer = io.BytesIO(); fig.savefig(buffer, format="png"); fig.clf()
|
70 |
+
hist_uri = "data:image/png;base64," + base64.b64encode(buffer.getvalue()).decode()
|
71 |
+
|
72 |
+
return raw_txt, mod_txt, badge, hist_uri
|
73 |
+
|
74 |
+
|
75 |
+
# ------------------------------------------------------------
|
76 |
+
# Gradio UI
|
77 |
+
# ------------------------------------------------------------
|
78 |
+
with gr.Blocks(title="WFGY — Self-Healing Variance Gate") as demo:
|
79 |
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
### 🧠 **WFGY 1-click Variance Gate**
|
83 |
+
|
84 |
+
*Turn GPT-2 into a calmer thinker in seconds. Bigger LLMs show even stronger gains.*
|
85 |
|
86 |
+
| Metric | Meaning |
|
87 |
+
|--------|---------|
|
88 |
+
| **variance ▼** | logits become less noisy (focus ↑) |
|
89 |
+
| **KL** | distribution actually reshaped |
|
90 |
+
| **top-1** | most-likely token swapped ✔ or not ✘ |
|
91 |
|
92 |
+
**Benchmarks (WFGY 1.0 vs base):**
|
|
|
93 |
|
94 |
+
| Task | Base % | WFGY % | Δ |
|
95 |
+
|------|-------|-------|---|
|
96 |
+
| MMLU | 61.0 | **89.8** | +47 % |
|
97 |
+
| TruthfulQA | 62.4 | **90.4** | +45 % |
|
98 |
+
| GSM8K | 78.0 | **98.7** | +27 % |
|
99 |
+
|
100 |
+
> 🔖 *PDF workflow*: clone repo → feed `docs/WFGY_1.0.pdf` to <em>any</em> chat-LLM, prepend your prompt with **“use WFGY”** and watch the difference — no-code, cross-model magic.
|
101 |
+
> ⭐ **10 000 GitHub Stars before 2025-08-01** unlocks **WFGY 2.0** (adaptive gamma, cross-modal). Miss it and v2 goes pay-walled & sealed.
|
102 |
+
> 📂 *I_am_not_lizardman/* holds <b>8 + 1 “Challenge-Einstein” papers</b> — tweet a screenshot if you find them!
|
103 |
+
"""
|
104 |
+
)
|
105 |
|
106 |
with gr.Row():
|
107 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Ask anything…", lines=2)
|
108 |
+
enable = gr.Checkbox(label="Enable WFGY", value=True)
|
109 |
+
run_btn = gr.Button("Run")
|
110 |
|
111 |
+
with gr.Row():
|
112 |
+
raw_out = gr.Textbox(label="• Raw GPT-2", lines=4)
|
113 |
+
mod_out = gr.Textbox(label="• After WFGY", lines=4)
|
114 |
+
|
115 |
+
metrics = gr.HTML()
|
116 |
+
hist = gr.Image(label="Logit distribution", width=440)
|
117 |
|
118 |
+
run_btn.click(
|
119 |
+
fn=wfgy_demo,
|
120 |
+
inputs=[prompt, enable],
|
121 |
+
outputs=[raw_out, mod_out, metrics, hist]
|
122 |
+
)
|
123 |
|
124 |
gr.Markdown(
|
125 |
+
"""
|
126 |
+
<div align="center">
|
127 |
+
⭐ Love the variance drop? <a href="https://github.com/onestardao/WFGY" target="_blank"><b>Star the repo</b></a> •
|
128 |
+
<a href="https://doi.org/10.5281/zenodo.15630970" target="_blank">Read the paper</a>
|
129 |
+
</div>
|
130 |
+
""",
|
131 |
+
elem_id="footer"
|
132 |
)
|
133 |
|
134 |
demo.launch()
|