Spaces:
Sleeping
Sleeping
| from typing import Union, Optional, List, Any, Tuple | |
| import os | |
| import torch | |
| from ditk import logging | |
| from functools import partial | |
| from tensorboardX import SummaryWriter | |
| from copy import deepcopy | |
| from ding.envs import get_vec_env_setting, create_env_manager | |
| from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ | |
| create_serial_collector | |
| from ding.config import read_config, compile_config | |
| from ding.policy import create_policy | |
| from ding.reward_model import create_reward_model | |
| from ding.utils import set_pkg_seed | |
| from .utils import random_collect | |
| def serial_pipeline_ngu( | |
| input_cfg: Union[str, Tuple[dict, dict]], | |
| seed: int = 0, | |
| env_setting: Optional[List[Any]] = None, | |
| model: Optional[torch.nn.Module] = None, | |
| max_train_iter: Optional[int] = int(1e10), | |
| max_env_step: Optional[int] = int(1e10), | |
| ) -> 'Policy': # noqa | |
| """ | |
| Overview: | |
| Serial pipeline entry for NGU. The corresponding paper is | |
| `never give up: learning directed exploration strategies`. | |
| Arguments: | |
| - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
| ``str`` type means config file path. \ | |
| ``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
| - seed (:obj:`int`): Random seed. | |
| - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
| ``BaseEnv`` subclass, collector env config, and evaluator env config. | |
| - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
| - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. | |
| - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. | |
| Returns: | |
| - policy (:obj:`Policy`): Converged policy. | |
| """ | |
| if isinstance(input_cfg, str): | |
| cfg, create_cfg = read_config(input_cfg) | |
| else: | |
| cfg, create_cfg = deepcopy(input_cfg) | |
| create_cfg.policy.type = create_cfg.policy.type + '_command' | |
| env_fn = None if env_setting is None else env_setting[0] | |
| cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True) | |
| # Create main components: env, policy | |
| if env_setting is None: | |
| env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) | |
| else: | |
| env_fn, collector_env_cfg, evaluator_env_cfg = env_setting | |
| collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) | |
| evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) | |
| # if you want to save replay, please uncomment this line | |
| # evaluator_env.enable_save_replay(cfg.env.replay_path) | |
| collector_env.seed(cfg.seed) | |
| evaluator_env.seed(cfg.seed, dynamic_seed=False) | |
| set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
| policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) | |
| # Create worker components: learner, collector, evaluator, replay buffer, commander. | |
| tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
| learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
| collector = create_serial_collector( | |
| cfg.policy.collect.collector, | |
| env=collector_env, | |
| policy=policy.collect_mode, | |
| tb_logger=tb_logger, | |
| exp_name=cfg.exp_name | |
| ) | |
| evaluator = InteractionSerialEvaluator( | |
| cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
| ) | |
| replay_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) | |
| commander = BaseSerialCommander( | |
| cfg.policy.other.commander, learner, collector, evaluator, replay_buffer, policy.command_mode | |
| ) | |
| rnd_reward_model = create_reward_model(cfg.rnd_reward_model, policy.collect_mode.get_attribute('device'), tb_logger) | |
| episodic_reward_model = create_reward_model( | |
| cfg.episodic_reward_model, policy.collect_mode.get_attribute('device'), tb_logger | |
| ) | |
| # ========== | |
| # Main loop | |
| # ========== | |
| # Learner's before_run hook. | |
| learner.call_hook('before_run') | |
| # Accumulate plenty of data at the beginning of training. | |
| if cfg.policy.get('random_collect_size', 0) > 0: | |
| random_collect(cfg.policy, policy, collector, collector_env, commander, replay_buffer) | |
| estimate_cnt = 0 | |
| iter_ = 0 | |
| while True: | |
| """some hyper-parameters used in NGU""" | |
| # index_to_eps = {i: 0.4 ** (1 + 8 * i / (self._env_num - 1)) for i in range(self._env_num)} | |
| # index_to_beta = { | |
| # i: 0.3 * torch.sigmoid(torch.tensor(10 * (2 * i - (collector_env_num - 2)) / (collector_env_num - 2))) | |
| # for i in range(collector_env_num) | |
| # } | |
| # index_to_gamma = { | |
| # i: 1 - torch.exp( | |
| # ( | |
| # (collector_env_num - 1 - i) * torch.log(torch.tensor(1 - 0.997)) + | |
| # i * torch.log(torch.tensor(1 - 0.99)) | |
| # ) / (collector_env_num - 1) | |
| # ) | |
| # for i in range(collector_env_num) | |
| # } | |
| iter_ += 1 | |
| # Evaluate policy performance | |
| if evaluator.should_eval(learner.train_iter): | |
| stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
| if stop: | |
| break | |
| # Collect data by default config n_sample/n_episode | |
| new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=None) | |
| # collect data for reward_model training | |
| rnd_reward_model.collect_data(new_data) | |
| episodic_reward_model.collect_data(new_data) | |
| replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) | |
| # update reward_model | |
| rnd_reward_model.train() | |
| if (iter_ + 1) % cfg.rnd_reward_model.clear_buffer_per_iters == 0: | |
| rnd_reward_model.clear_data() | |
| episodic_reward_model.train() | |
| if (iter_ + 1) % cfg.episodic_reward_model.clear_buffer_per_iters == 0: | |
| episodic_reward_model.clear_data() | |
| # Learn policy from collected data | |
| for i in range(cfg.policy.learn.update_per_collect): | |
| # Learner will train ``update_per_collect`` times in one iteration. | |
| train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) | |
| if train_data is None: | |
| # It is possible that replay buffer's data count is too few to train ``update_per_collect`` times | |
| logging.warning( | |
| "Replay buffer's data can only train for {} steps. ".format(i) + | |
| "You can modify data collect config, e.g. increasing n_sample, n_episode." | |
| ) | |
| break | |
| # calculate the inter-episodic and episodic intrinsic reward | |
| rnd_reward = rnd_reward_model.estimate(train_data) | |
| episodic_reward = episodic_reward_model.estimate(train_data) | |
| # update train_data reward using the augmented reward | |
| train_data_augmented, estimate_cnt = episodic_reward_model.fusion_reward( | |
| train_data, | |
| rnd_reward, | |
| episodic_reward, | |
| nstep=cfg.policy.nstep, | |
| collector_env_num=cfg.policy.collect.env_num, | |
| tb_logger=tb_logger, | |
| estimate_cnt=estimate_cnt | |
| ) | |
| learner.train(train_data_augmented, collector.envstep) | |
| if learner.policy.get_attribute('priority'): | |
| replay_buffer.update(learner.priority_info) | |
| if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
| break | |
| # Learner's after_run hook. | |
| learner.call_hook('after_run') | |
| return policy | |