Spaces:
Sleeping
Sleeping
| from easydict import EasyDict | |
| collector_env_num = 8 | |
| evaluator_env_num = 8 | |
| nstep = 5 | |
| max_env_step = int(10e6) | |
| montezuma_ngu_config = dict( | |
| exp_name='montezuma_ngu_seed0', | |
| env=dict( | |
| collector_env_num=collector_env_num, | |
| evaluator_env_num=evaluator_env_num, | |
| n_evaluator_episode=8, | |
| env_id='MontezumaRevengeNoFrameskip-v4', | |
| #'ALE/MontezumaRevenge-v5' is available. But special setting is needed after gym make. | |
| obs_plus_prev_action_reward=True, # use specific env wrapper for ngu policy | |
| stop_value=int(1e5), | |
| frame_stack=4, | |
| ), | |
| rnd_reward_model=dict( | |
| intrinsic_reward_type='add', | |
| learning_rate=0.001, | |
| obs_shape=[4, 84, 84], | |
| action_shape=18, | |
| batch_size=320, | |
| update_per_collect=10, | |
| only_use_last_five_frames_for_icm_rnd=False, | |
| clear_buffer_per_iters=10, | |
| nstep=nstep, | |
| hidden_size_list=[128, 128, 64], | |
| type='rnd-ngu', | |
| ), | |
| episodic_reward_model=dict( | |
| # means if using rescale trick to the last non-zero reward | |
| # when combing extrinsic and intrinsic reward. | |
| # the rescale trick only used in: | |
| # 1. sparse reward env minigrid, in which the last non-zero reward is a strong positive signal | |
| # 2. the last reward of each episode directly reflects the agent's completion of the task, e.g. lunarlander | |
| # Note that the ngu intrinsic reward is a positive value (max value is 5), in these envs, | |
| # the last non-zero reward should not be overwhelmed by intrinsic rewards, so we need rescale the | |
| # original last nonzero extrinsic reward. | |
| # please refer to ngu_reward_model for details. | |
| last_nonzero_reward_rescale=False, | |
| # means the rescale value for the last non-zero reward, only used when last_nonzero_reward_rescale is True | |
| # please refer to ngu_reward_model for details. | |
| last_nonzero_reward_weight=1, | |
| intrinsic_reward_type='add', | |
| learning_rate=0.001, | |
| obs_shape=[4, 84, 84], | |
| action_shape=18, | |
| batch_size=320, | |
| update_per_collect=10, # 32*100/64=50 | |
| only_use_last_five_frames_for_icm_rnd=False, | |
| clear_buffer_per_iters=10, | |
| nstep=nstep, | |
| hidden_size_list=[128, 128, 64], | |
| type='episodic', | |
| ), | |
| policy=dict( | |
| cuda=True, | |
| on_policy=False, | |
| priority=True, | |
| priority_IS_weight=True, | |
| discount_factor=0.997, | |
| nstep=nstep, | |
| burnin_step=20, | |
| # (int) <learn_unroll_len> is the total length of [sequence sample] minus | |
| # the length of burnin part in [sequence sample], | |
| # i.e., <sequence sample length> = <unroll_len> = <burnin_step> + <learn_unroll_len> | |
| learn_unroll_len=80, # set this key according to the episode length | |
| model=dict( | |
| obs_shape=[4, 84, 84], | |
| action_shape=18, | |
| encoder_hidden_size_list=[128, 128, 512], | |
| collector_env_num=collector_env_num, | |
| ), | |
| learn=dict( | |
| update_per_collect=8, | |
| batch_size=64, | |
| learning_rate=0.0005, | |
| target_update_theta=0.001, | |
| ), | |
| collect=dict( | |
| # NOTE: It is important that set key traj_len_inf=True here, | |
| # to make sure self._traj_len=INF in serial_sample_collector.py. | |
| # In sequence-based policy, for each collect_env, | |
| # we want to collect data of length self._traj_len=INF | |
| # unless the episode enters the 'done' state. | |
| # In each collect phase, we collect a total of <n_sample> sequence samples. | |
| n_sample=32, | |
| traj_len_inf=True, | |
| env_num=collector_env_num, | |
| ), | |
| eval=dict(env_num=evaluator_env_num, ), | |
| other=dict( | |
| eps=dict( | |
| type='exp', | |
| start=0.95, | |
| end=0.05, | |
| decay=1e5, | |
| ), | |
| replay_buffer=dict( | |
| replay_buffer_size=int(2e3), | |
| # (Float type) How much prioritization is used: 0 means no prioritization while 1 means full prioritization | |
| alpha=0.6, | |
| # (Float type) How much correction is used: 0 means no correction while 1 means full correction | |
| beta=0.4, | |
| ) | |
| ), | |
| ), | |
| ) | |
| montezuma_ngu_config = EasyDict(montezuma_ngu_config) | |
| main_config = montezuma_ngu_config | |
| montezuma_ngu_create_config = dict( | |
| env=dict( | |
| type='atari', | |
| import_names=['dizoo.atari.envs.atari_env'], | |
| ), | |
| env_manager=dict(type='subprocess'), | |
| policy=dict(type='ngu'), | |
| rnd_reward_model=dict(type='rnd-ngu'), | |
| episodic_reward_model=dict(type='episodic'), | |
| ) | |
| montezuma_ngu_create_config = EasyDict(montezuma_ngu_create_config) | |
| create_config = montezuma_ngu_create_config | |
| if __name__ == "__main__": | |
| from ding.entry import serial_pipeline_reward_model_ngu | |
| serial_pipeline_reward_model_ngu([main_config, create_config], seed=0, max_env_step=max_env_step) | |