Spaces:
Sleeping
Sleeping
import numpy as np | |
from dizoo.beergame.envs.beergame_core import BeerGame | |
from typing import Union, List, Optional | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.utils import ENV_REGISTRY | |
from ding.torch_utils import to_ndarray | |
import copy | |
class BeerGameEnv(BaseEnv): | |
def __init__(self, cfg: dict) -> None: | |
self._cfg = cfg | |
self._init_flag = False | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = BeerGame(self._cfg.role, self._cfg.agent_type, self._cfg.demandDistribution) | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = self._env.reward_space | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
self._eval_episode_return = 0 | |
obs = self._env.reset() | |
obs = to_ndarray(obs).astype(np.float32) | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: | |
if isinstance(action, np.ndarray) and action.shape == (1, ): | |
action = action.squeeze() # 0-dim array | |
obs, rew, done, info = self._env.step(action) | |
self._eval_episode_return += rew | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
obs = to_ndarray(obs).astype(np.float32) | |
rew = to_ndarray([rew]).astype(np.float32) # wrapped to be transfered to a array with shape (1,) | |
return BaseEnvTimestep(obs, rew, done, info) | |
def reward_shaping(self, transitions: List[dict]) -> List[dict]: | |
new_transitions = copy.deepcopy(transitions) | |
for trans in new_transitions: | |
trans['reward'] = self._env.reward_shaping(trans['reward']) | |
return new_transitions | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
if isinstance(random_action, int): | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def enable_save_figure(self, figure_path: Optional[str] = None) -> None: | |
self._env.enable_save_figure(figure_path) | |
def observation_space(self) -> int: | |
return self._observation_space | |
def action_space(self) -> int: | |
return self._action_space | |
def reward_space(self) -> int: | |
return self._reward_space | |
def __repr__(self) -> str: | |
return "DI-engine Beergame Env" | |