Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
nstep = 3 | |
lunarlander_acer_config = dict( | |
exp_name='lunarlander_acer_seed0', | |
env=dict( | |
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' | |
# Env number respectively for collector and evaluator. | |
collector_env_num=8, | |
evaluator_env_num=8, | |
env_id='LunarLander-v2', | |
n_evaluator_episode=8, | |
stop_value=200, | |
), | |
policy=dict( | |
# Whether to use cuda for network. | |
cuda=False, | |
# Model config used for model creating. Remember to change this, | |
# especially "obs_shape" and "action_shape" according to specific env. | |
model=dict( | |
obs_shape=8, | |
action_shape=4, | |
encoder_hidden_size_list=[512, 64], | |
# Whether to use dueling head. | |
), | |
# Reward's future discount facotr, aka. gamma. | |
discount_factor=0.99, | |
# How many steps in td error. | |
nstep=nstep, | |
unroll_len=32, | |
# learn_mode config | |
learn=dict( | |
# (int) collect n_sample data, train model update_per_collect times | |
# here we follow impala serial pipeline | |
update_per_collect=10, | |
# (int) the number of data for a train iteration | |
batch_size=32, | |
# grad_clip_type='clip_norm', | |
# clip_value=10, | |
learning_rate_actor=0.0001, | |
learning_rate_critic=0.0001, | |
# (float) loss weight of the value network, the weight of policy network is set to 1 | |
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1 | |
entropy_weight=0.0, | |
# (float) discount factor for future reward, defaults int [0, 1] | |
discount_factor=0.99, | |
# (float) additional discounting parameter | |
# (int) the trajectory length to calculate v-trace target | |
# (float) clip ratio of importance weights | |
c_clip_ratio=10, | |
), | |
collect=dict( | |
# (int) collect n_sample data, train model n_iteration times | |
n_sample=16, | |
# (float) discount factor for future reward, defaults int [0, 1] | |
discount_factor=0.99, | |
gae_lambda=0.95, | |
collector=dict(collect_print_freq=1000, ), | |
), | |
eval=dict(evaluator=dict(eval_freq=5000, )), | |
other=dict(replay_buffer=dict(replay_buffer_size=50000, ), ), | |
), | |
) | |
lunarlander_acer_config = EasyDict(lunarlander_acer_config) | |
main_config = lunarlander_acer_config | |
lunarlander_acer_create_config = dict( | |
env=dict( | |
type='lunarlander', | |
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='acer'), | |
replay_buffer=dict(type='naive') | |
) | |
lunarlander_acer_create_config = EasyDict(lunarlander_acer_create_config) | |
create_config = lunarlander_acer_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial -c lunarlander_acer_config.py -s 0` | |
from ding.entry import serial_pipeline | |
serial_pipeline([main_config, create_config], seed=0) | |