Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
cartpole_a2c_config = dict( | |
exp_name='cartpole_a2c_seed0', | |
env=dict( | |
collector_env_num=8, | |
evaluator_env_num=5, | |
n_evaluator_episode=5, | |
stop_value=195, | |
), | |
policy=dict( | |
cuda=False, | |
# (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) | |
model=dict( | |
obs_shape=4, | |
action_shape=2, | |
encoder_hidden_size_list=[128, 128, 64], | |
), | |
learn=dict( | |
batch_size=40, | |
learning_rate=0.001, | |
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1 | |
entropy_weight=0.01, | |
), | |
collect=dict( | |
# (int) collect n_sample data, train model n_iteration times | |
n_sample=80, | |
# (float) the trade-off factor lambda to balance 1step td and mc | |
gae_lambda=0.95, | |
), | |
eval=dict(evaluator=dict(eval_freq=50, )), | |
), | |
) | |
cartpole_a2c_config = EasyDict(cartpole_a2c_config) | |
main_config = cartpole_a2c_config | |
cartpole_a2c_create_config = dict( | |
env=dict( | |
type='cartpole', | |
import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], | |
), | |
env_manager=dict(type='base'), | |
policy=dict(type='a2c'), | |
) | |
cartpole_a2c_create_config = EasyDict(cartpole_a2c_create_config) | |
create_config = cartpole_a2c_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial_onpolicy -c cartpole_a2c_config.py -s 0` | |
from ding.entry import serial_pipeline_onpolicy | |
serial_pipeline_onpolicy((main_config, create_config), seed=0) | |