Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
cartpole_dqfd_config = dict( | |
exp_name='cartpole_dqfd_seed0', | |
env=dict( | |
collector_env_num=8, | |
evaluator_env_num=5, | |
n_evaluator_episode=5, | |
stop_value=195, | |
), | |
policy=dict( | |
cuda=True, | |
priority=True, | |
model=dict( | |
obs_shape=4, | |
action_shape=2, | |
encoder_hidden_size_list=[128, 128, 64], | |
dueling=True, | |
), | |
nstep=3, | |
discount_factor=0.97, | |
learn=dict( | |
batch_size=64, | |
learning_rate=0.001, | |
lambda1=1, # n-step return | |
lambda2=3.0, # supervised loss | |
# set this to be 0 (L2 loss = 0) with expert_replay_buffer_size = 0 and lambda1 = 0 | |
# recover the one step pdd dqn | |
lambda3=0, # L2 regularization | |
per_train_iter_k=10, | |
expert_replay_buffer_size=10000, # justify the buffer size of the expert buffer | |
), | |
collect=dict( | |
n_sample=8, | |
# Users should add their own model path here. Model path should lead to a model. | |
# Absolute path is recommended. | |
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. | |
model_path='model_path_placeholder', | |
), | |
# note: this is the times after which you learns to evaluate | |
eval=dict(evaluator=dict(eval_freq=50, )), | |
other=dict( | |
eps=dict( | |
type='exp', | |
start=0.95, | |
end=0.1, | |
decay=10000, | |
), | |
replay_buffer=dict(replay_buffer_size=20000, ), | |
), | |
), | |
) | |
cartpole_dqfd_config = EasyDict(cartpole_dqfd_config) | |
main_config = cartpole_dqfd_config | |
cartpole_dqfd_create_config = dict( | |
env=dict( | |
type='cartpole', | |
import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], | |
), | |
env_manager=dict(type='base'), | |
policy=dict(type='dqfd'), | |
) | |
cartpole_dqfd_create_config = EasyDict(cartpole_dqfd_create_config) | |
create_config = cartpole_dqfd_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial_dqfd -c cartpole_dqfd_config.py -s 0` | |
# then input ``cartpole_dqfd_config.py`` upon the instructions. | |
# The reason we need to input the dqfd config is we have to borrow its ``_get_train_sample`` function | |
# in the collector part even though the expert model may be generated from other Q learning algos. | |
from ding.entry.serial_entry_dqfd import serial_pipeline_dqfd | |
from dizoo.classic_control.cartpole.config import cartpole_dqfd_config, cartpole_dqfd_create_config | |
expert_main_config = cartpole_dqfd_config | |
expert_create_config = cartpole_dqfd_create_config | |
serial_pipeline_dqfd((main_config, create_config), (expert_main_config, expert_create_config), seed=0) | |