Commit
Β·
fc365d2
1
Parent(s):
d109182
update
Browse files
README.md
CHANGED
|
@@ -4,9 +4,10 @@ emoji: π
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.41.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
duplicated_from: OpenGenAI/open-parti-prompts
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from datasets import load_dataset
|
| 2 |
from collections import Counter, defaultdict
|
| 3 |
from random import sample, shuffle
|
|
|
|
| 4 |
import datasets
|
| 5 |
from pandas import DataFrame
|
| 6 |
from huggingface_hub import list_datasets
|
|
@@ -13,40 +14,41 @@ import secrets
|
|
| 13 |
parti_prompt_results = []
|
| 14 |
ORG = "diffusers-parti-prompts"
|
| 15 |
SUBMISSIONS = {
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"karlo": load_dataset(os.path.join(ORG, "
|
| 20 |
-
# "Kadinsky":
|
| 21 |
}
|
| 22 |
|
| 23 |
LINKS = {
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
"karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha",
|
| 28 |
}
|
| 29 |
-
|
| 30 |
-
"## The
|
| 31 |
-

|
| 39 |
-
\n You mostly resonate with **Stable Diffusion
|
| 40 |
-
\n Stable Diffusion
|
| 41 |
-
|
|
|
|
| 42 |
"""
|
| 43 |
-
|
| 44 |
-
## The
|
| 45 |
-
)
|
| 67 |
SUBMISSION_ORG = f"results-{MODEL_KEYS}"
|
| 68 |
-
PROMPT_FORMAT = "
|
| 69 |
|
| 70 |
submission_names = list(SUBMISSIONS.keys())
|
| 71 |
num_images = len(SUBMISSIONS[submission_names[0]])
|
|
@@ -161,31 +163,40 @@ def start():
|
|
| 161 |
|
| 162 |
def process(dataframe, row_number=0):
|
| 163 |
if row_number == NUM_QUESTIONS:
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
|
| 166 |
image_id = dataframe.iloc[row_number]["id"]
|
| 167 |
choices = [
|
| 168 |
submission_names[dataframe.iloc[row_number][f"choice_{i}"]]
|
| 169 |
for i in range(len(SUBMISSIONS))
|
| 170 |
]
|
| 171 |
-
images =
|
| 172 |
|
| 173 |
prompt = SUBMISSIONS[choices[0]][int(image_id)]["Prompt"]
|
| 174 |
prompt = f'# "{prompt}"'
|
| 175 |
counter = f"***{row_number + 1}/{NUM_QUESTIONS} {PROMPT_FORMAT}***"
|
|
|
|
| 176 |
|
| 177 |
-
return *images, prompt, counter
|
| 178 |
|
| 179 |
|
| 180 |
def write_result(user_choice, row_number, dataframe):
|
| 181 |
if row_number == NUM_QUESTIONS:
|
| 182 |
return row_number, dataframe
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
return row_number + 1, dataframe
|
| 190 |
|
| 191 |
|
|
@@ -196,7 +207,10 @@ def get_index(evt: gr.SelectData) -> int:
|
|
| 196 |
def change_view(row_number, dataframe):
|
| 197 |
if row_number == NUM_QUESTIONS:
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
| 200 |
dataset = datasets.Dataset.from_pandas(dataframe)
|
| 201 |
dataset = dataset.remove_columns(set(dataset.column_names) - set(["id", "result"]))
|
| 202 |
hash = generate_random_hash()
|
|
@@ -225,7 +239,7 @@ TITLE = "# What AI model is best for you? π©ββοΈ"
|
|
| 225 |
DESCRIPTION = """
|
| 226 |
***How it works*** π \n\n
|
| 227 |
- Upon clicking start, you are shown image descriptions alongside four AI generated images.
|
| 228 |
-
\n- Select the
|
| 229 |
\n- Answer **10** questions to find out what AI generator most resonates with you.
|
| 230 |
\n- Your submissions contribute to [**Open Parti Prompts Leaderboard**](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard) β€οΈ.
|
| 231 |
\n\n
|
|
@@ -236,11 +250,11 @@ The prompts you are shown originate from the [Parti Prompts](https://huggingface
|
|
| 236 |
Parti Prompts is designed to test text-to-image AI models on 1600+ prompts of varying difficulty and categories.
|
| 237 |
The images you are shown have been pre-generated with 4 state-of-the-art open-sourced text-to-image models.
|
| 238 |
You answers will be used to contribute to the official [**Open Parti Prompts Leaderboard**](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard).
|
| 239 |
-
Every
|
| 240 |
-
- [
|
| 241 |
-
- [
|
| 242 |
-
- [
|
| 243 |
-
- [karlo
|
| 244 |
"""
|
| 245 |
|
| 246 |
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
|
|
@@ -293,16 +307,18 @@ with gr.Blocks() as demo:
|
|
| 293 |
with gr.Row():
|
| 294 |
with gr.Column() as c1:
|
| 295 |
image_1 = gr.Image(interactive=False)
|
| 296 |
-
image_1_button = gr.
|
| 297 |
with gr.Column() as c2:
|
| 298 |
image_2 = gr.Image(interactive=False)
|
| 299 |
-
image_2_button = gr.
|
| 300 |
with gr.Column() as c3:
|
| 301 |
image_3 = gr.Image(interactive=False)
|
| 302 |
-
image_3_button = gr.
|
| 303 |
with gr.Column() as c4:
|
| 304 |
image_4 = gr.Image(interactive=False)
|
| 305 |
-
image_4_button = gr.
|
|
|
|
|
|
|
| 306 |
|
| 307 |
start_button.click(
|
| 308 |
fn=start,
|
|
@@ -316,92 +332,20 @@ with gr.Blocks() as demo:
|
|
| 316 |
).then(
|
| 317 |
fn=change_view,
|
| 318 |
inputs=[row_number, dataframe],
|
| 319 |
-
outputs=[intro_view, result_view, gallery_view, start_view, result]
|
| 320 |
).then(
|
| 321 |
-
fn=process,
|
|
|
|
|
|
|
| 322 |
)
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
outputs=[selected_image],
|
| 328 |
-
).then(
|
| 329 |
-
fn=write_result,
|
| 330 |
-
inputs=[selected_image, row_number, dataframe],
|
| 331 |
-
outputs=[row_number, dataframe],
|
| 332 |
-
).then(
|
| 333 |
-
fn=change_view,
|
| 334 |
-
inputs=[row_number, dataframe],
|
| 335 |
-
outputs=[intro_view, result_view, gallery_view, start_view, result]
|
| 336 |
-
).then(
|
| 337 |
-
fn=process,
|
| 338 |
-
inputs=[dataframe, row_number],
|
| 339 |
-
outputs=[image_1, image_2, image_3, image_4, prompt, counter]
|
| 340 |
-
).then(
|
| 341 |
-
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
| 342 |
-
inputs=[row_number],
|
| 343 |
-
outputs=[row_number],
|
| 344 |
-
).then(
|
| 345 |
-
fn=refresh,
|
| 346 |
-
inputs=[row_number, dataframe],
|
| 347 |
-
outputs=[dataframe],
|
| 348 |
-
)
|
| 349 |
|
| 350 |
-
|
| 351 |
-
fn=
|
| 352 |
-
inputs=[],
|
| 353 |
-
outputs=[selected_image],
|
| 354 |
-
).then(
|
| 355 |
-
fn=write_result,
|
| 356 |
-
inputs=[selected_image, row_number, dataframe],
|
| 357 |
-
outputs=[row_number, dataframe],
|
| 358 |
-
).then(
|
| 359 |
-
fn=change_view,
|
| 360 |
-
inputs=[row_number, dataframe],
|
| 361 |
-
outputs=[intro_view, result_view, gallery_view, start_view, result]
|
| 362 |
-
).then(
|
| 363 |
-
fn=process,
|
| 364 |
-
inputs=[dataframe, row_number],
|
| 365 |
-
outputs=[image_1, image_2, image_3, image_4, prompt, counter]
|
| 366 |
-
).then(
|
| 367 |
-
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
| 368 |
-
inputs=[row_number],
|
| 369 |
-
outputs=[row_number],
|
| 370 |
-
).then(
|
| 371 |
-
fn=refresh,
|
| 372 |
-
inputs=[row_number, dataframe],
|
| 373 |
-
outputs=[dataframe],
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
image_3_button.click(
|
| 377 |
-
fn=lambda: 2,
|
| 378 |
-
inputs=[],
|
| 379 |
-
outputs=[selected_image],
|
| 380 |
-
).then(
|
| 381 |
-
fn=write_result,
|
| 382 |
-
inputs=[selected_image, row_number, dataframe],
|
| 383 |
-
outputs=[row_number, dataframe],
|
| 384 |
-
).then(
|
| 385 |
-
fn=change_view,
|
| 386 |
-
inputs=[row_number, dataframe],
|
| 387 |
-
outputs=[intro_view, result_view, gallery_view, start_view, result]
|
| 388 |
-
).then(
|
| 389 |
-
fn=process,
|
| 390 |
-
inputs=[dataframe, row_number],
|
| 391 |
-
outputs=[image_1, image_2, image_3, image_4, prompt, counter]
|
| 392 |
-
).then(
|
| 393 |
-
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
| 394 |
-
inputs=[row_number],
|
| 395 |
-
outputs=[row_number],
|
| 396 |
-
).then(
|
| 397 |
-
fn=refresh,
|
| 398 |
-
inputs=[row_number, dataframe],
|
| 399 |
-
outputs=[dataframe],
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
image_4_button.click(
|
| 403 |
-
fn=lambda: 3,
|
| 404 |
-
inputs=[],
|
| 405 |
outputs=[selected_image],
|
| 406 |
).then(
|
| 407 |
fn=write_result,
|
|
@@ -414,7 +358,7 @@ with gr.Blocks() as demo:
|
|
| 414 |
).then(
|
| 415 |
fn=process,
|
| 416 |
inputs=[dataframe, row_number],
|
| 417 |
-
outputs=[image_1, image_2, image_3, image_4, prompt, counter]
|
| 418 |
).then(
|
| 419 |
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
| 420 |
inputs=[row_number],
|
|
|
|
| 1 |
from datasets import load_dataset
|
| 2 |
from collections import Counter, defaultdict
|
| 3 |
from random import sample, shuffle
|
| 4 |
+
from collections import Counter
|
| 5 |
import datasets
|
| 6 |
from pandas import DataFrame
|
| 7 |
from huggingface_hub import list_datasets
|
|
|
|
| 14 |
parti_prompt_results = []
|
| 15 |
ORG = "diffusers-parti-prompts"
|
| 16 |
SUBMISSIONS = {
|
| 17 |
+
"kand2": load_dataset(os.path.join(ORG, "kandinsky-2-2"))["train"],
|
| 18 |
+
"sdxl": load_dataset(os.path.join(ORG, "sdxl-1.0-refiner"))["train"],
|
| 19 |
+
"wuerst": load_dataset(os.path.join(ORG, "wuerstchen"))["train"],
|
| 20 |
+
"karlo": load_dataset(os.path.join(ORG, "karlo-v1"))["train"],
|
|
|
|
| 21 |
}
|
| 22 |
|
| 23 |
LINKS = {
|
| 24 |
+
"kand2": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
|
| 25 |
+
"sdxl": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
|
| 26 |
+
"wuerst": "https://huggingface.co/warp-ai/wuerstchen",
|
| 27 |
"karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha",
|
| 28 |
}
|
| 29 |
+
KANDINSKY = """
|
| 30 |
+
"## The creative one π¨!
|
| 31 |
+

|
| 32 |
+
\n You mostly resonate with **Kandinsky 2.2** released by AI Forever.
|
| 33 |
+
\n Kandinsky 2.2 has a similar architecture to DALLE-2 and works extremely well for artistic, colorful generations.
|
| 34 |
+
\n Check out your soulmate [here](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder).
|
| 35 |
"""
|
| 36 |
+
SDXL_RESULT = """
|
| 37 |
+
## The powerful one β‘!
|
| 38 |

|
| 39 |
+
\n You mostly resonate with **Stable Diffusion XL** released by Stability AI.
|
| 40 |
+
\n Stable Diffusion XL consists of a two diffusion models that are chained together, a base model and a refiner model. Together, the system contains roughly 5 billion parameters.
|
| 41 |
+
\n It's the latest open-source release of Stable Diffusion and allows to render stunning images of much larger sizes than Stable Diffusion v1.
|
| 42 |
+
Try it out [here](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
|
| 43 |
"""
|
| 44 |
+
WUERSTCHEN = """
|
| 45 |
+
## The innovative one βοΈ !
|
| 46 |
+

|
| 47 |
+
\n You mostly resonate with **Wuerstchen** released by the WARP team.
|
| 48 |
+
\n Wuerstchen is a three stage diffusion model that proposed a very novel, innovative model architecture.
|
| 49 |
+
\n Wuerstchen is able to generate very large images (up to 1024x2048) in just a few seconds.
|
| 50 |
+
\n The model has an amazing image quality vs. speed trade-off.
|
| 51 |
+
\n Check out your new best friend [here](https://huggingface.co/warp-ai/wuerstchen).
|
| 52 |
"""
|
| 53 |
KARLO = """
|
| 54 |
## The precise one π―!
|
|
|
|
| 59 |
"""
|
| 60 |
|
| 61 |
RESULT = {
|
| 62 |
+
"kand2": KANDINSKY,
|
| 63 |
+
"wuerst": WUERSTCHEN,
|
| 64 |
+
"sdxl": SDXL_RESULT,
|
| 65 |
"karlo": KARLO,
|
| 66 |
}
|
| 67 |
NUM_QUESTIONS = 10
|
| 68 |
MODEL_KEYS = "-".join(SUBMISSIONS.keys())
|
| 69 |
SUBMISSION_ORG = f"results-{MODEL_KEYS}"
|
| 70 |
+
PROMPT_FORMAT = " Select all pictures that correctly match the prompt and click on 'Submit'. Remember that if no image matches the prompt, no image shall be selected."
|
| 71 |
|
| 72 |
submission_names = list(SUBMISSIONS.keys())
|
| 73 |
num_images = len(SUBMISSIONS[submission_names[0]])
|
|
|
|
| 163 |
|
| 164 |
def process(dataframe, row_number=0):
|
| 165 |
if row_number == NUM_QUESTIONS:
|
| 166 |
+
nones = len(RESULT) * [None]
|
| 167 |
+
falses = len(RESULT) * [False]
|
| 168 |
+
return *nones, *falses, "", ""
|
| 169 |
|
| 170 |
image_id = dataframe.iloc[row_number]["id"]
|
| 171 |
choices = [
|
| 172 |
submission_names[dataframe.iloc[row_number][f"choice_{i}"]]
|
| 173 |
for i in range(len(SUBMISSIONS))
|
| 174 |
]
|
| 175 |
+
images = [SUBMISSIONS[c][int(image_id)]["images"] for c in choices]
|
| 176 |
|
| 177 |
prompt = SUBMISSIONS[choices[0]][int(image_id)]["Prompt"]
|
| 178 |
prompt = f'# "{prompt}"'
|
| 179 |
counter = f"***{row_number + 1}/{NUM_QUESTIONS} {PROMPT_FORMAT}***"
|
| 180 |
+
image_buttons = len(images) * [False]
|
| 181 |
|
| 182 |
+
return *images, *image_buttons, prompt, counter
|
| 183 |
|
| 184 |
|
| 185 |
def write_result(user_choice, row_number, dataframe):
|
| 186 |
if row_number == NUM_QUESTIONS:
|
| 187 |
return row_number, dataframe
|
| 188 |
|
| 189 |
+
user_choices = []
|
| 190 |
+
for i, b in enumerate(str(user_choice)):
|
| 191 |
+
if bool(int(b)):
|
| 192 |
+
user_choices.append(i)
|
| 193 |
+
|
| 194 |
+
chosen_models = []
|
| 195 |
+
for user_choice in user_choices:
|
| 196 |
+
chosen_models.append(submission_names[dataframe.iloc[row_number][f"choice_{user_choice}"]])
|
| 197 |
|
| 198 |
+
print(chosen_models)
|
| 199 |
+
dataframe.loc[row_number, "result"] = ",".join(chosen_models)
|
| 200 |
return row_number + 1, dataframe
|
| 201 |
|
| 202 |
|
|
|
|
| 207 |
def change_view(row_number, dataframe):
|
| 208 |
if row_number == NUM_QUESTIONS:
|
| 209 |
|
| 210 |
+
results = sum([x.split(",") for x in dataframe["result"].values], [])
|
| 211 |
+
results = [r for r in results if len(r) > 0]
|
| 212 |
+
favorite_model = Counter(results).most_common(1)[0][0]
|
| 213 |
+
|
| 214 |
dataset = datasets.Dataset.from_pandas(dataframe)
|
| 215 |
dataset = dataset.remove_columns(set(dataset.column_names) - set(["id", "result"]))
|
| 216 |
hash = generate_random_hash()
|
|
|
|
| 239 |
DESCRIPTION = """
|
| 240 |
***How it works*** π \n\n
|
| 241 |
- Upon clicking start, you are shown image descriptions alongside four AI generated images.
|
| 242 |
+
\n- Select all images that match the prompt. **Note** that you should leave all images *unchecked* if no image matches the prompt.
|
| 243 |
\n- Answer **10** questions to find out what AI generator most resonates with you.
|
| 244 |
\n- Your submissions contribute to [**Open Parti Prompts Leaderboard**](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard) β€οΈ.
|
| 245 |
\n\n
|
|
|
|
| 250 |
Parti Prompts is designed to test text-to-image AI models on 1600+ prompts of varying difficulty and categories.
|
| 251 |
The images you are shown have been pre-generated with 4 state-of-the-art open-sourced text-to-image models.
|
| 252 |
You answers will be used to contribute to the official [**Open Parti Prompts Leaderboard**](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard).
|
| 253 |
+
Every couple months, the generated images will be updated with possibly improved models. The current models and code that was used to generate the images can be verified here:\n
|
| 254 |
+
- [kandinsky-2-2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) \n
|
| 255 |
+
- [wuerstchen](https://huggingface.co/warp-ai/wuerstchen) \n
|
| 256 |
+
- [sdxl-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) \n
|
| 257 |
+
- [karlo](https://huggingface.co/datasets/diffusers-parti-prompts/karlo-v1) \n
|
| 258 |
"""
|
| 259 |
|
| 260 |
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
|
|
|
|
| 307 |
with gr.Row():
|
| 308 |
with gr.Column() as c1:
|
| 309 |
image_1 = gr.Image(interactive=False)
|
| 310 |
+
image_1_button = gr.Checkbox(False, label="Image 1").style(full_width=True)
|
| 311 |
with gr.Column() as c2:
|
| 312 |
image_2 = gr.Image(interactive=False)
|
| 313 |
+
image_2_button = gr.Checkbox(False, label="Image 2").style(full_width=True)
|
| 314 |
with gr.Column() as c3:
|
| 315 |
image_3 = gr.Image(interactive=False)
|
| 316 |
+
image_3_button = gr.Checkbox(False, label="Image 3").style(full_width=True)
|
| 317 |
with gr.Column() as c4:
|
| 318 |
image_4 = gr.Image(interactive=False)
|
| 319 |
+
image_4_button = gr.Checkbox(False, label="Image 4").style(full_width=True)
|
| 320 |
+
with gr.Row():
|
| 321 |
+
submit_button = gr.Button("Submit").style(full_width=True)
|
| 322 |
|
| 323 |
start_button.click(
|
| 324 |
fn=start,
|
|
|
|
| 332 |
).then(
|
| 333 |
fn=change_view,
|
| 334 |
inputs=[row_number, dataframe],
|
| 335 |
+
outputs=[intro_view, result_view, gallery_view, start_view, result],
|
| 336 |
).then(
|
| 337 |
+
fn=process,
|
| 338 |
+
inputs=[dataframe],
|
| 339 |
+
outputs=[image_1, image_2, image_3, image_4, image_1_button, image_2_button, image_3_button, image_4_button, prompt, counter]
|
| 340 |
)
|
| 341 |
|
| 342 |
+
def integerize(x1, x2, x3, x4):
|
| 343 |
+
number = f"{int(x1)}{int(x2)}{int(x3)}{int(x4)}"
|
| 344 |
+
return int(number)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
+
submit_button.click(
|
| 347 |
+
fn=integerize,
|
| 348 |
+
inputs=[image_1_button, image_2_button, image_3_button, image_4_button],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
outputs=[selected_image],
|
| 350 |
).then(
|
| 351 |
fn=write_result,
|
|
|
|
| 358 |
).then(
|
| 359 |
fn=process,
|
| 360 |
inputs=[dataframe, row_number],
|
| 361 |
+
outputs=[image_1, image_2, image_3, image_4, image_1_button, image_2_button, image_3_button, image_4_button, prompt, counter],
|
| 362 |
).then(
|
| 363 |
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
| 364 |
inputs=[row_number],
|