Spaces:
Running
Running
File size: 15,756 Bytes
0bf0309 3013461 0bf0309 3013461 0bf0309 3013461 0bf0309 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
#!/usr/bin/env python3
"""
OpenMed NER Model Discovery App
A beautiful Gradio interface for exploring and discovering OpenMed NER models
"""
import gradio as gr
import pandas as pd
from pathlib import Path
import re
from collections import Counter
class OpenMedModelDiscovery:
def __init__(self):
self.data_file = Path(__file__).parent / "data" / "openmed_models_database.csv"
self.df = pd.read_csv(self.data_file)
# Clean and prepare data
self._prepare_data()
# Define entity colors
self.entity_colors = {
"Chemical": "#2E8B57", # SeaGreen
"DNA": "#4169E1", # RoyalBlue
"RNA": "#1E90FF", # DodgerBlue
"Protein": "#9932CC", # DarkOrchid
"Gene": "#8A2BE2", # BlueViolet
"Gene/Protein": "#6A5ACD", # SlateBlue
"Disease": "#DC143C", # Crimson
"Cell Line": "#FF6347", # Tomato
"Cell Type": "#FF4500", # OrangeRed
"Cell": "#FF8C00", # DarkOrange
"Anatomy": "#32CD32", # LimeGreen
"Species": "#228B22", # ForestGreen
"Cancer": "#8B0000", # DarkRed
"Clinical": "#4682B4", # SteelBlue
"Protein Complex": "#9370DB", # MediumPurple
"Protein Family": "#8B008B", # DarkMagenta
"Protein Variant": "#9400D3", # Violet
"Amino Acid": "#BA55D3", # MediumOrchid
"Cellular Component": "#20B2AA", # LightSeaGreen
"Default": "#696969", # DimGray
}
def _prepare_data(self):
"""Clean and prepare the data for better display"""
# Fill missing values
self.df["entities"] = self.df["entities"].fillna("")
self.df["size_mb"] = pd.to_numeric(self.df["size_mb"], errors="coerce")
# Create size categories
self.df["size_category"] = self.df["size_mb"].apply(self._categorize_size)
# Split entities into lists for easier filtering
self.df["entity_list"] = self.df["entities"].apply(
lambda x: [e.strip() for e in x.split(",")] if x else []
)
def _categorize_size(self, size_mb):
"""Categorize model size"""
if pd.isna(size_mb):
return "Unknown"
elif size_mb < 100:
return "Compact (<100M)"
elif size_mb < 200:
return "Medium (100-200M)"
elif size_mb < 400:
return "Large (200-400M)"
else:
return "XLarge (>400M)"
def create_entity_badge(self, entity):
"""Create a colored badge for an entity type"""
color = self.entity_colors.get(entity, self.entity_colors["Default"])
return f'<span style="background-color: {color}; color: white; padding: 3px 8px; border-radius: 12px; font-size: 12px; margin: 3px 4px; display: inline-block; line-height: 1.4;">{entity}</span>'
def create_model_card(self, row):
"""Create a beautiful model card HTML"""
entities_html = " ".join(
[self.create_entity_badge(e) for e in row["entity_list"] if e]
)
size_text = f"{row['size_mb']:.0f}M" if pd.notna(row["size_mb"]) else "Unknown"
card_html = f"""
<div style="border: 1px solid #ddd; border-radius: 8px; padding: 16px; margin: 8px 0; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);">
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 8px;">
<h3 style="margin: 0; color: #2c3e50; font-size: 18px;">{row['short_name']}</h3>
<span style="background-color: #6c757d; color: white; padding: 4px 8px; border-radius: 4px; font-size: 12px;">{row['architecture']}</span>
</div>
<div style="margin-bottom: 8px;">
<strong>Domain:</strong> <span style="color: #495057;">{row['domain']}</span> |
<strong>Size:</strong> <span style="color: #495057;">{size_text}</span>
</div>
<div style="margin-bottom: 12px;">
<strong>Entities:</strong><br>
<div style="margin-top: 6px; line-height: 1.6;">
{entities_html if entities_html else '<span style="color: #6c757d; margin: 20px;">No entities available</span>'}
</div>
</div>
<div style="margin-bottom: 12px;">
<strong>Description:</strong><br>
<span style="color: #6c757d; font-style: italic;">{row['description']}</span>
</div>
<div style="display: flex; gap: 8px; margin-bottom: 8px;">
<a href="{row['hf_link']}" target="_blank" style="background-color: #007bff; color: white; padding: 6px 12px; border-radius: 4px; text-decoration: none; font-size: 12px;">π€ View on HF</a>
<button onclick="copyToClipboard('{row['code_snippet']}')" style="background-color: #28a745; color: white; padding: 6px 12px; border-radius: 4px; border: none; cursor: pointer; font-size: 12px;">π Copy Code</button>
</div>
<details style="margin-top: 8px;">
<summary style="cursor: pointer; color: #007bff;">π Usage Code</summary>
<pre style="background-color: #f8f9fa; padding: 8px; border-radius: 4px; margin-top: 4px; font-size: 11px; overflow-x: auto;"><code>from transformers import {row['code_snippet']}</code></pre>
</details>
</div>
"""
return card_html
def search_models(
self, text_query, entity_filters, domain_filters, size_filters, limit=20
):
"""Search and filter models based on criteria"""
filtered_df = self.df.copy()
# Text search
if text_query.strip():
text_mask = (
filtered_df["model_name"].str.contains(text_query, case=False, na=False)
| filtered_df["short_name"].str.contains(
text_query, case=False, na=False
)
| filtered_df["domain"].str.contains(text_query, case=False, na=False)
| filtered_df["description"].str.contains(
text_query, case=False, na=False
)
| filtered_df["entities"].str.contains(text_query, case=False, na=False)
)
filtered_df = filtered_df[text_mask]
# Entity filters
if entity_filters:
entity_mask = filtered_df["entity_list"].apply(
lambda entities: any(entity in entity_filters for entity in entities)
)
filtered_df = filtered_df[entity_mask]
# Domain filters
if domain_filters:
filtered_df = filtered_df[filtered_df["domain"].isin(domain_filters)]
# Size filters
if size_filters:
filtered_df = filtered_df[filtered_df["size_category"].isin(size_filters)]
# Limit results
filtered_df = filtered_df.head(limit)
if filtered_df.empty:
return "<div style='text-align: center; padding: 40px; color: #6c757d;'><h3>No models found π</h3><p>Try adjusting your search criteria</p></div>"
# Create model cards
cards_html = f"<div style='margin-bottom: 16px;'><h2>Found {len(filtered_df)} models</h2></div>"
for _, row in filtered_df.iterrows():
cards_html += self.create_model_card(row)
return cards_html
def get_entity_stats(self):
"""Get entity statistics"""
all_entities = []
for entity_list in self.df["entity_list"]:
all_entities.extend(entity_list)
entity_counts = Counter(all_entities)
# Remove empty strings
entity_counts = {k: v for k, v in entity_counts.items() if k}
return entity_counts
def get_filter_options(self):
"""Get all available filter options"""
# Get unique domains
domains = sorted(self.df["domain"].unique())
# Get unique sizes
sizes = sorted(self.df["size_category"].unique())
# Get all unique entities
all_entities = set()
for entity_list in self.df["entity_list"]:
all_entities.update(entity_list)
entities = sorted([e for e in all_entities if e]) # Remove empty strings
return entities, domains, sizes
# Initialize the app
app = OpenMedModelDiscovery()
# Get filter options
ALL_ENTITIES = [
"amino_acid",
"anatomical_system",
"anatomy",
"cancer",
"cell",
"cell_line",
"cell_line_name",
"cell_type",
"cellular_component",
"chemical",
"clinical",
"developing_anatomical_structure",
"disease",
"dna",
"gene/protein",
"gene_or_protein",
"immaterial_anatomical_entity",
"multi_tissue_structure",
"organ",
"organism",
"organism_subdivision",
"organism_substance",
"pathological_formation",
"protein",
"protein_complex",
"protein_family",
"protein_variant",
"rna",
"species",
"tissue",
]
entities, domains, sizes = app.get_filter_options()
# Use comprehensive entity list instead of dynamic extraction for UI
entities = ALL_ENTITIES
# Custom CSS
custom_css = """
<style>
.gradio-container {
max-width: 1200px !important;
}
.model-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(400px, 1fr));
gap: 16px;
margin-top: 16px;
}
/* Copy to clipboard functionality */
</style>
<script>
function copyToClipboard(text) {
navigator.clipboard.writeText(text).then(function() {
alert('Code copied to clipboard!');
});
}
</script>
"""
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue", secondary_hue="green", neutral_hue="slate"
),
css=custom_css,
title="π¬ OpenMed NER Model Discovery App",
) as demo:
# Header
gr.HTML(
"""
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
<h1 style="color: white; margin: 0; font-size: 36px;">π¬ OpenMed NER Model Discovery</h1>
<p style="color: white; margin: 10px 0 0 0; font-size: 18px;">Discover the perfect NER model for your biomedical text analysis from 380+ free OpenMed models</p>
</div>
"""
)
with gr.Tabs():
# Search Tab
with gr.Tab("π Search Models", elem_id="search-tab"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π― Search & Filter")
text_search = gr.Textbox(
label="Search Models",
placeholder="e.g., chemical detection, cancer genomics, DNA...",
lines=1,
)
entity_filter = gr.Dropdown(
choices=entities,
label="Entities",
info="Search and select entities (e.g., Chemical, DNA, Disease)...",
multiselect=True,
value=[],
interactive=True,
)
with gr.Row():
domain_filter = gr.CheckboxGroup(
choices=domains, label="Domains", value=[]
)
size_filter = gr.CheckboxGroup(
choices=sizes, label="Model Size", value=[]
)
result_limit = gr.Slider(
minimum=5, maximum=50, value=20, step=5, label="Max Results"
)
clear_btn = gr.Button("ποΈ Clear Filters", variant="secondary")
with gr.Column(scale=2):
gr.Markdown("### π Search Results")
results_display = gr.HTML()
# Auto-search on any input change
def auto_search(*args):
return app.search_models(*args)
# Connect auto-search to all inputs
for component in [
text_search,
entity_filter,
domain_filter,
size_filter,
result_limit,
]:
component.change(
fn=auto_search,
inputs=[
text_search,
entity_filter,
domain_filter,
size_filter,
result_limit,
],
outputs=results_display,
)
# Clear filters
def clear_filters():
return "", [], [], [], 20
clear_btn.click(
fn=clear_filters,
outputs=[
text_search,
entity_filter,
domain_filter,
size_filter,
result_limit,
],
)
# About Tab
with gr.Tab("βΉοΈ About", elem_id="about-tab"):
gr.Markdown(
"""
# π¬ About OpenMed NER Model Discovery
## What is OpenMed?
OpenMed is a collection of **380+ state-of-the-art Named Entity Recognition (NER) models** for biomedical and clinical text analysis. All models are:
- β
**Completely Free** - Apache 2.0 license
- β
**High Performance** - F1 scores up to 99.8%
- β
**Ready to Use** - Compatible with Hugging Face Transformers
- β
**Diverse** - Covers 8+ medical domains and 20+ entity types
## π― Use Cases
- **Drug Discovery** - Identify chemicals and compounds
- **Clinical Research** - Extract diseases and symptoms
- **Genomics** - Detect genes, proteins, and DNA/RNA
- **Medical Records** - Parse anatomical terms and clinical notes
- **Pharmacovigilance** - Monitor drug safety and adverse events
## ποΈ Model Architectures
- **BERT** - Bidirectional transformers for robust performance
- **DeBERTa** - Enhanced attention mechanisms
- **RoBERTa** - Optimized training for biomedical text
- **ModernBERT** - Latest advances in transformer architecture
## π Coverage
- **8 Medical Domains** - Pharmacology, Genomics, Oncology, Pathology, etc.
- **20+ Entity Types** - Chemical, DNA, RNA, Protein, Disease, Anatomy, etc.
- **Multiple Sizes** - From 33M to 568M parameters
- **380+ Models** - Comprehensive coverage for any biomedical NLP task
## π Getting Started
1. **Search** - Use the search tab to find models by domain, entity type, or keywords
2. **Compare** - View model cards with performance metrics and descriptions
3. **Copy Code** - Get ready-to-use code snippets
4. **Deploy** - Download and use with Hugging Face Transformers
## π§ Contact & Support
- **Models** - [OpenMed on Hugging Face](https://huggingface.co/OpenMed)
- **Paper** - Coming soon on arXiv
- **Community** - Join discussions on Hugging Face
---
Built with β€οΈ for the biomedical research community
"""
)
# Load initial results
demo.load(fn=lambda: app.search_models("", [], [], [], 20), outputs=results_display)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True)
|