Spaces:
Runtime error
Runtime error
nisharg nargund
commited on
Commit
·
dd2c48e
1
Parent(s):
03be6a6
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""tumor-classification-using-keras.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1EgMc5_zGbuWuvrsGd2sg2bVfXYUQXanx
|
8 |
+
|
9 |
+
# Import Statements
|
10 |
+
"""
|
11 |
+
|
12 |
+
from zipfile import ZipFile
|
13 |
+
file_name = "brain_tumor_dataset_kaggle.zip"
|
14 |
+
|
15 |
+
with ZipFile(file_name,'r') as zip:
|
16 |
+
zip.extractall()
|
17 |
+
print("done")
|
18 |
+
|
19 |
+
import os
|
20 |
+
import keras
|
21 |
+
from keras.models import Sequential
|
22 |
+
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization
|
23 |
+
from PIL import Image
|
24 |
+
import numpy as np
|
25 |
+
import pandas as pd
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
|
28 |
+
from sklearn.preprocessing import OneHotEncoder
|
29 |
+
encoder = OneHotEncoder()
|
30 |
+
encoder.fit([[0], [1]])
|
31 |
+
|
32 |
+
# 0 - Tumor
|
33 |
+
# 1 - Normal
|
34 |
+
|
35 |
+
"""
|
36 |
+
1. data list for storing image data in numpy array form
|
37 |
+
2. paths list for storing paths of all images
|
38 |
+
3. result list for storing one hot encoded form of target class whether normal or tumor"""
|
39 |
+
|
40 |
+
# This cell updates result list for images with tumor
|
41 |
+
|
42 |
+
data = []
|
43 |
+
paths = []
|
44 |
+
result = []
|
45 |
+
|
46 |
+
for r, d, f in os.walk(r'../content/brain_tumor_dataset/yes'): #r-read, d-directory, f-file
|
47 |
+
for file in f:
|
48 |
+
if '.jpg' in file:
|
49 |
+
paths.append(os.path.join(r, file))
|
50 |
+
|
51 |
+
for path in paths:
|
52 |
+
img = Image.open(path)
|
53 |
+
img = img.resize((128,128))
|
54 |
+
img = np.array(img)
|
55 |
+
if(img.shape == (128,128,3)):
|
56 |
+
data.append(np.array(img))
|
57 |
+
result.append(encoder.transform([[0]]).toarray())
|
58 |
+
|
59 |
+
# This cell updates result list for images without tumor
|
60 |
+
|
61 |
+
paths = []
|
62 |
+
for r, d, f in os.walk(r"../content/brain_tumor_dataset/no"):
|
63 |
+
for file in f:
|
64 |
+
if '.jpg' in file:
|
65 |
+
paths.append(os.path.join(r, file))
|
66 |
+
|
67 |
+
for path in paths:
|
68 |
+
img = Image.open(path)
|
69 |
+
img = img.resize((128,128))
|
70 |
+
img = np.array(img)
|
71 |
+
if(img.shape == (128,128,3)):
|
72 |
+
data.append(np.array(img))
|
73 |
+
result.append(encoder.transform([[1]]).toarray())
|
74 |
+
|
75 |
+
data = np.array(data)
|
76 |
+
data.shape
|
77 |
+
|
78 |
+
result = np.array(result)
|
79 |
+
result = result.reshape(139,2)
|
80 |
+
|
81 |
+
from sklearn.model_selection import train_test_split
|
82 |
+
x_train,x_test,y_train,y_test = train_test_split(data, result, test_size=0.1, shuffle=True, random_state=0)
|
83 |
+
|
84 |
+
"""# Model Building
|
85 |
+
|
86 |
+
Batch normalization is a technique for training very deep neural networks that standardizes the inputs to a layer for each mini-batch. This has the effect of stabilizing the learning process and dramatically reducing the number of training epochs required to train deep networks.
|
87 |
+
"""
|
88 |
+
|
89 |
+
model = Sequential()
|
90 |
+
|
91 |
+
model.add(Conv2D(32, kernel_size=(2, 2), input_shape=(128, 128, 3), padding = 'Same'))
|
92 |
+
model.add(Conv2D(32, kernel_size=(2, 2), activation ='relu', padding = 'Same'))
|
93 |
+
|
94 |
+
|
95 |
+
model.add(BatchNormalization())
|
96 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
97 |
+
model.add(Dropout(0.25))
|
98 |
+
|
99 |
+
model.add(Conv2D(64, kernel_size = (2,2), activation ='relu', padding = 'Same'))
|
100 |
+
model.add(Conv2D(64, kernel_size = (2,2), activation ='relu', padding = 'Same'))
|
101 |
+
model.add(Conv2D(64, kernel_size = (2,2), activation ='relu', padding = 'Same'))
|
102 |
+
model.add(Conv2D(64, kernel_size = (2,2), activation ='relu', padding = 'Same'))
|
103 |
+
|
104 |
+
model.add(BatchNormalization())
|
105 |
+
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
|
106 |
+
model.add(Dropout(0.25))
|
107 |
+
|
108 |
+
model.add(Flatten())
|
109 |
+
|
110 |
+
model.add(Dense(512, activation='relu'))
|
111 |
+
model.add(Dropout(0.5))
|
112 |
+
model.add(Dense(2, activation='softmax'))
|
113 |
+
|
114 |
+
model.compile(loss = "categorical_crossentropy", optimizer='Adamax')
|
115 |
+
print(model.summary())
|
116 |
+
|
117 |
+
y_train.shape
|
118 |
+
|
119 |
+
history = model.fit(x_train, y_train, epochs = 30, batch_size = 40, verbose = 1,validation_data = (x_test, y_test))
|
120 |
+
|
121 |
+
"""# Plotting Losses"""
|
122 |
+
|
123 |
+
plt.plot(history.history['loss'])
|
124 |
+
plt.plot(history.history['val_loss'])
|
125 |
+
plt.title('Model Loss')
|
126 |
+
plt.ylabel('Loss')
|
127 |
+
plt.xlabel('Epoch')
|
128 |
+
plt.legend(['Test', 'Validation'], loc='upper right')
|
129 |
+
plt.show()
|
130 |
+
|
131 |
+
"""# Just Checking the Model"""
|
132 |
+
|
133 |
+
def names(number):
|
134 |
+
if number==0:
|
135 |
+
return 'Its a Tumor'
|
136 |
+
else:
|
137 |
+
return 'No, Its not a tumor'
|
138 |
+
|
139 |
+
from matplotlib.pyplot import imshow
|
140 |
+
img = Image.open(r"../content/brain_tumor_dataset/no/11 no.jpg")
|
141 |
+
x = np.array(img.resize((128,128)))
|
142 |
+
x = x.reshape(1,128,128,3)
|
143 |
+
res = model.predict_on_batch(x)
|
144 |
+
classification = np.where(res == np.amax(res))[1][0]
|
145 |
+
imshow(img)
|
146 |
+
print(str(res[0][classification]*100) + '% Confidence This Is A ' + names(classification))
|
147 |
+
|
148 |
+
from matplotlib.pyplot import imshow
|
149 |
+
img = Image.open(r"../content/brain_tumor_dataset/no/18 no.jpg")
|
150 |
+
x = np.array(img.resize((128,128)))
|
151 |
+
x = x.reshape(1,128,128,3)
|
152 |
+
res = model.predict_on_batch(x)
|
153 |
+
classification = np.where(res == np.amax(res))[1][0]
|
154 |
+
imshow(img)
|
155 |
+
print(str(res[0][classification]*100) + '% Confidence This Is A ' + names(classification))
|
156 |
+
|
157 |
+
"""# Thats It !!"""
|