Spaces:
Runtime error
Runtime error
nisharg nargund
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from langchain_groq import ChatGroq
|
| 4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 9 |
+
from langchain.chains import create_retrieval_chain
|
| 10 |
+
from langchain_community.vectorstores import FAISS
|
| 11 |
+
from langchain_community.document_loaders.recursive_url_loader import RecursiveUrlLoader
|
| 12 |
+
from bs4 import BeautifulSoup as Soup
|
| 13 |
+
import time
|
| 14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 15 |
+
from streamlit_option_menu import option_menu
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
st.sidebar.title("OpenRAG")
|
| 19 |
+
st.sidebar.markdown(
|
| 20 |
+
"""
|
| 21 |
+
OpenRAG is a tool that enhances the speed and efficiency of retrieving information from educational websites,
|
| 22 |
+
including the scrap it out component, allowing quick access to precise answers.
|
| 23 |
+
"""
|
| 24 |
+
)
|
| 25 |
+
st.sidebar.markdown(
|
| 26 |
+
"""
|
| 27 |
+
Whether for academic research, professional inquiries, or personal curiosity, OpenRAG's Scrap it out feature is poised
|
| 28 |
+
to revolutionize the way users engage with online educational resources. Experience the unparalleled convenience and effectiveness of Scrap it out
|
| 29 |
+
– your gateway to rapid, reliable information retrieval.
|
| 30 |
+
"""
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
st.sidebar.markdown(
|
| 34 |
+
"""
|
| 35 |
+
Enjoy Using Scarp it out!!
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
st.title("Scrap it out 🦅")
|
| 42 |
+
st.text("")
|
| 43 |
+
url_link = st.text_input("Input your website link here")
|
| 44 |
+
|
| 45 |
+
# Check if website needs to be loaded (initial load or new URL)
|
| 46 |
+
if url_link and ("vector" not in st.session_state or url_link != st.session_state.get("loaded_url")):
|
| 47 |
+
with st.spinner("Loading..."):
|
| 48 |
+
st.session_state.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 49 |
+
st.session_state.loader = RecursiveUrlLoader(url=url_link, max_depth=10, extractor=lambda x: Soup(x, "html.parser").text)
|
| 50 |
+
st.session_state.docs = st.session_state.loader.load()
|
| 51 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 52 |
+
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
| 53 |
+
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
| 54 |
+
st.session_state["loaded_url"] = url_link # Store the loaded URL
|
| 55 |
+
st.success("Loaded!")
|
| 56 |
+
|
| 57 |
+
# Rest of the code for LLM and user interaction remains the same
|
| 58 |
+
|
| 59 |
+
llm = ChatGroq(model_name="mixtral-8x7b-32768", groq_api_key="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")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
prompt = ChatPromptTemplate.from_template(
|
| 63 |
+
"""
|
| 64 |
+
Answer the questions based on the provided context only.
|
| 65 |
+
Please provide the most accurate response based on the question.
|
| 66 |
+
<context>
|
| 67 |
+
{context}
|
| 68 |
+
<context>
|
| 69 |
+
Questions;{input}
|
| 70 |
+
"""
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
if url_link:
|
| 74 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
| 75 |
+
retriever = st.session_state.vectors.as_retriever()
|
| 76 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 77 |
+
|
| 78 |
+
st.text("")
|
| 79 |
+
query = st.text_input("Input your question here")
|
| 80 |
+
|
| 81 |
+
if query:
|
| 82 |
+
start = time.process_time()
|
| 83 |
+
response = (retrieval_chain.invoke({"input":query}))
|
| 84 |
+
print("Response time: ", time.process_time() - start)
|
| 85 |
+
st.write(response['answer'])
|
| 86 |
+
st.write("Response time: ", time.process_time() - start)
|
| 87 |
+
|
| 88 |
+
with st.expander("NOT THE EXPECTED RESPONSE? CHECK OUT HERE"):
|
| 89 |
+
|
| 90 |
+
for i, doc in enumerate(response["context"]):
|
| 91 |
+
st.write(doc.page_content)
|
| 92 |
+
st.write("----------------------------------")
|