Spaces:
Sleeping
Sleeping
nisharg nargund
commited on
Commit
·
08257b6
1
Parent(s):
09e53e1
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
model = tf.keras.models.load_model('braintumor.h5')
|
9 |
+
|
10 |
+
# Define labels for the classes
|
11 |
+
labels = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor']
|
12 |
+
|
13 |
+
# Define a function to make predictions
|
14 |
+
def predict_tumor_type(image):
|
15 |
+
# Preprocess the image
|
16 |
+
img = cv2.resize(image, (150, 150))
|
17 |
+
img_array = np.array(img)
|
18 |
+
img_array = img_array.reshape(1, 150, 150, 3)
|
19 |
+
|
20 |
+
# Make prediction
|
21 |
+
prediction = model.predict(img_array)
|
22 |
+
predicted_class = labels[np.argmax(prediction)]
|
23 |
+
confidence = np.max(prediction)
|
24 |
+
|
25 |
+
return predicted_class, confidence
|
26 |
+
|
27 |
+
# Streamlit UI
|
28 |
+
st.title("Brain Tumor Classification")
|
29 |
+
st.write("Upload an image for brain tumor classification.")
|
30 |
+
|
31 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
32 |
+
|
33 |
+
if uploaded_image is not None:
|
34 |
+
# Display the uploaded image
|
35 |
+
image = Image.open(uploaded_image)
|
36 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
37 |
+
|
38 |
+
# Make prediction
|
39 |
+
prediction, confidence = predict_tumor_type(np.array(image))
|
40 |
+
|
41 |
+
st.write("Prediction:", prediction)
|
42 |
+
st.write(f"Confidence: {confidence * 100:.2f}%")
|
43 |
+
|
44 |
+
st.write("DISCLAIMER:")
|
45 |
+
st.write("0 - glioma_tumor")
|
46 |
+
st.write("1 - meningioma_tumor")
|
47 |
+
st.write("2 - No_tumor")
|
48 |
+
st.write("3 - pituitary_tumor")
|