nisharg nargund commited on
Commit
5e708ea
·
1 Parent(s): 642c54e

Delete app1.py

Browse files
Files changed (1) hide show
  1. app1.py +0 -65
app1.py DELETED
@@ -1,65 +0,0 @@
1
- import streamlit as st
2
- import tensorflow as tf
3
- from PIL import Image
4
- import numpy as np
5
- import sys
6
-
7
- # Create a Streamlit app
8
- st.title("Brain Tumor Detection")
9
-
10
- # Upload an image or multiple images
11
- images = st.file_uploader("Upload MRI images of brains", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
12
-
13
- # Check if TensorFlow is available
14
- if 'tensorflow' not in sys.modules:
15
- st.warning("TensorFlow is not available in this environment. Please ensure that you have the correct environment activated.")
16
- else:
17
- # Load the TensorFlow model from the .h5 file
18
- model = tf.keras.models.load_model("model.h5")
19
-
20
- # Threshold for tumor detection
21
- threshold = 0.1
22
-
23
- if images:
24
- st.write("Analyzed uploaded images...")
25
- for image in images:
26
- # Display the original image
27
- st.image(image, caption="Uploaded Image", use_column_width=True)
28
-
29
- # Preprocess the image
30
- image = Image.open(image)
31
- image = image.resize((128, 128)) # Resize to match model's input size
32
- image = np.array(image)
33
- image = image / 255.0 # Normalize
34
- image = np.expand_dims(image, axis=0) # Add batch dimension
35
-
36
- # Make predictions
37
- predictions = model.predict(image)
38
-
39
- # Extract the prediction probability for the positive class
40
- tumor_probability = predictions[0][1]
41
-
42
- # Calculate the average probability of tumor detection
43
- average_probability = np.mean(tumor_probability)
44
-
45
- # Check if the average probability is greater than the threshold
46
- if average_probability > threshold:
47
- st.write("Prediction: Tumor detected with confidence {:.2f}".format(average_probability))
48
- else:
49
- st.write("Prediction: No tumor detected with confidence {:.2f}".format(2 - average_probability))
50
-
51
-
52
- # Add a separator between images
53
- st.write("---")
54
-
55
- # User instructions
56
- st.sidebar.header("Instructions")
57
- st.sidebar.markdown(
58
- """
59
- - Upload MRI images of brains using the file uploader.
60
- - The app will analyze and provide predictions for each image.
61
- - A confidence score is displayed to indicate prediction confidence.
62
- - Adjust the threshold for tumor detection as needed.
63
- - Explore different images to evaluate the model's performance.
64
- """
65
- )