nisharg nargund commited on
Commit
c98a826
·
1 Parent(s): 6368686

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -14
app.py CHANGED
@@ -1,23 +1,33 @@
1
  import streamlit as st
2
- import os
 
 
3
 
4
- # Load the model
5
- model = keras.models.load_model("./model.h5")
6
-
7
- # Create a function to make predictions
8
- def predict(image):
9
- prediction = model.predict(image)
10
- return prediction
11
 
12
  # Create a Streamlit app
13
- st.title("Bone Fracture Detection")
14
 
15
  # Upload an image
16
- image = st.file_uploader("Upload an image of a bone fracture")
17
 
18
- # If an image is uploaded, make a prediction
19
  if image is not None:
20
- image = image.read()
21
- prediction = predict(image)
22
- st.write("The prediction is:", prediction)
 
 
 
 
 
 
 
 
23
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import tensorflow as tf
3
+ from PIL import Image
4
+ import numpy as np
5
 
6
+ # Load the TensorFlow model from the .h5 file
7
+ model = tf.keras.models.load_model("model.h5")
 
 
 
 
 
8
 
9
  # Create a Streamlit app
10
+ st.title("Brain Tumor Detection")
11
 
12
  # Upload an image
13
+ image = st.file_uploader("Upload an MRI image of a brain with a tumor", type=["jpg", "jpeg", "png"])
14
 
15
+ # Button to make predictions
16
  if image is not None:
17
+ image = Image.open(image)
18
+ st.image(image, caption="Uploaded Image", use_column_width=True)
19
+
20
+ # Preprocess the image
21
+ image = image.resize((224, 224)) # Adjust the size according to your model's input requirements
22
+ image = np.array(image)
23
+ image = image / 255.0 # Normalize the image to [0, 1]
24
+ image = np.expand_dims(image, axis=0) # Add batch dimension
25
+
26
+ # Make predictions
27
+ prediction = model.predict(image)
28
 
29
+ # Display prediction results
30
+ if prediction > 0.5:
31
+ st.write("Prediction: Tumor detected")
32
+ else:
33
+ st.write("Prediction: No tumor detected")