Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch_redstone as rst | |
| from einops import rearrange | |
| from .pointnet_util import PointNetSetAbstraction | |
| class PreNorm(nn.Module): | |
| def __init__(self, dim, fn): | |
| super().__init__() | |
| self.norm = nn.LayerNorm(dim) | |
| self.fn = fn | |
| def forward(self, x, *extra_args, **kwargs): | |
| return self.fn(self.norm(x), *extra_args, **kwargs) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, hidden_dim, dropout = 0.): | |
| super().__init__() | |
| self.net = nn.Sequential( | |
| nn.Linear(dim, hidden_dim), | |
| nn.GELU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_dim, dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| class Attention(nn.Module): | |
| def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., rel_pe = False): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| project_out = not (heads == 1 and dim_head == dim) | |
| self.heads = heads | |
| self.scale = dim_head ** -0.5 | |
| self.attend = nn.Softmax(dim = -1) | |
| self.dropout = nn.Dropout(dropout) | |
| self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, dim), | |
| nn.Dropout(dropout) | |
| ) if project_out else nn.Identity() | |
| self.rel_pe = rel_pe | |
| if rel_pe: | |
| self.pe = nn.Sequential(nn.Conv2d(3, 64, 1), nn.ReLU(), nn.Conv2d(64, 1, 1)) | |
| def forward(self, x, centroid_delta): | |
| qkv = self.to_qkv(x).chunk(3, dim = -1) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | |
| pe = self.pe(centroid_delta) if self.rel_pe else 0 | |
| dots = (torch.matmul(q, k.transpose(-1, -2)) + pe) * self.scale | |
| attn = self.attend(dots) | |
| attn = self.dropout(attn) | |
| out = torch.matmul(attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| return self.to_out(out) | |
| class Transformer(nn.Module): | |
| def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., rel_pe = False): | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append(nn.ModuleList([ | |
| PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, rel_pe = rel_pe)), | |
| PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | |
| ])) | |
| def forward(self, x, centroid_delta): | |
| for attn, ff in self.layers: | |
| x = attn(x, centroid_delta) + x | |
| x = ff(x) + x | |
| return x | |
| class PointPatchTransformer(nn.Module): | |
| def __init__(self, dim, depth, heads, mlp_dim, sa_dim, patches, prad, nsamp, in_dim=3, dim_head=64, rel_pe=False, patch_dropout=0) -> None: | |
| super().__init__() | |
| self.patches = patches | |
| self.patch_dropout = patch_dropout | |
| self.sa = PointNetSetAbstraction(npoint=patches, radius=prad, nsample=nsamp, in_channel=in_dim + 3, mlp=[64, 64, sa_dim], group_all=False) | |
| self.lift = nn.Sequential(nn.Conv1d(sa_dim + 3, dim, 1), rst.Lambda(lambda x: torch.permute(x, [0, 2, 1])), nn.LayerNorm([dim])) | |
| self.cls_token = nn.Parameter(torch.randn(dim)) | |
| self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, 0.0, rel_pe) | |
| def forward(self, features): | |
| self.sa.npoint = self.patches | |
| if self.training: | |
| self.sa.npoint -= self.patch_dropout | |
| # print("input", features.shape) | |
| centroids, feature = self.sa(features[:, :3], features) | |
| # print("f", feature.shape, 'c', centroids.shape) | |
| x = self.lift(torch.cat([centroids, feature], dim=1)) | |
| x = rst.supercat([self.cls_token, x], dim=-2) | |
| centroids = rst.supercat([centroids.new_zeros(1), centroids], dim=-1) | |
| centroid_delta = centroids.unsqueeze(-1) - centroids.unsqueeze(-2) | |
| x = self.transformer(x, centroid_delta) | |
| return x[:, 0] | |
| class Projected(nn.Module): | |
| def __init__(self, ppat, proj) -> None: | |
| super().__init__() | |
| self.ppat = ppat | |
| self.proj = proj | |
| def forward(self, features: torch.Tensor): | |
| return self.proj(self.ppat(features)) | |