Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,15 @@ import torch
|
|
5 |
# import librosa
|
6 |
import torchaudio
|
7 |
from diffusers import DDIMScheduler
|
8 |
-
from transformers import AutoProcessor, ClapModel
|
9 |
from model.udit import UDiT
|
10 |
from vae_modules.autoencoder_wrapper import Autoencoder
|
11 |
import numpy as np
|
12 |
-
|
|
|
|
|
13 |
|
|
|
14 |
# snapshot_download(repo_id="laion/larger_clap_general",
|
15 |
# local_dir="./larger_clap_general",
|
16 |
# local_dir_use_symlinks=False)
|
@@ -27,8 +30,14 @@ with open(diffusion_config, 'r') as fp:
|
|
27 |
|
28 |
v_prediction = diff_config["ddim"]["v_prediction"]
|
29 |
|
30 |
-
clapmodel = ClapModel.from_pretrained("laion/larger_clap_general").to(device)
|
31 |
processor = AutoProcessor.from_pretrained('laion/larger_clap_general')
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
autoencoder = Autoencoder(autoencoder_path, 'stable_vae', quantization_first=True)
|
33 |
autoencoder.eval()
|
34 |
autoencoder.to(device)
|
|
|
5 |
# import librosa
|
6 |
import torchaudio
|
7 |
from diffusers import DDIMScheduler
|
8 |
+
from transformers import AutoProcessor, ClapModel, ClapConfig
|
9 |
from model.udit import UDiT
|
10 |
from vae_modules.autoencoder_wrapper import Autoencoder
|
11 |
import numpy as np
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
|
14 |
+
clap_bin_path = hf_hub_download("laion/larger_clap_general", "pytorch_model.bin")
|
15 |
|
16 |
+
# from huggingface_hub import snapshot_download
|
17 |
# snapshot_download(repo_id="laion/larger_clap_general",
|
18 |
# local_dir="./larger_clap_general",
|
19 |
# local_dir_use_symlinks=False)
|
|
|
30 |
|
31 |
v_prediction = diff_config["ddim"]["v_prediction"]
|
32 |
|
33 |
+
# clapmodel = ClapModel.from_pretrained("laion/larger_clap_general").to(device)
|
34 |
processor = AutoProcessor.from_pretrained('laion/larger_clap_general')
|
35 |
+
clap_config = ClapConfig.from_pretrained("laion/larger_clap_general") # 只下载 config.json(或用本地路径)
|
36 |
+
clapmodel = ClapModel(config)
|
37 |
+
clap_ckpt = torch.load(clap_bin_path, map_location='cpu')
|
38 |
+
clapmodel.load_state_dict(clap_ckpt)
|
39 |
+
clapmodel.to(device)
|
40 |
+
|
41 |
autoencoder = Autoencoder(autoencoder_path, 'stable_vae', quantization_first=True)
|
42 |
autoencoder.eval()
|
43 |
autoencoder.to(device)
|