Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,43 @@ from solospeech.corrector.geco.util.other import pad_spec
|
|
20 |
from huggingface_hub import snapshot_download
|
21 |
import time
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
parser = argparse.ArgumentParser()
|
24 |
# pre-trained model path
|
25 |
parser.add_argument('--eta', type=int, default=0)
|
@@ -89,42 +126,6 @@ timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps,
|
|
89 |
_ = noise_scheduler.add_noise(latents, noise, timesteps)
|
90 |
|
91 |
|
92 |
-
class Encoder(Pretrained):
|
93 |
-
|
94 |
-
MODULES_NEEDED = [
|
95 |
-
"compute_features",
|
96 |
-
"mean_var_norm",
|
97 |
-
"embedding_model"
|
98 |
-
]
|
99 |
-
|
100 |
-
def __init__(self, *args, **kwargs):
|
101 |
-
super().__init__(*args, **kwargs)
|
102 |
-
|
103 |
-
def encode_batch(self, wavs, wav_lens=None, normalize=False):
|
104 |
-
# Manage single waveforms in input
|
105 |
-
if len(wavs.shape) == 1:
|
106 |
-
wavs = wavs.unsqueeze(0)
|
107 |
-
|
108 |
-
# Assign full length if wav_lens is not assigned
|
109 |
-
if wav_lens is None:
|
110 |
-
wav_lens = torch.ones(wavs.shape[0], device=self.device)
|
111 |
-
|
112 |
-
# Storing waveform in the specified device
|
113 |
-
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
114 |
-
wavs = wavs.float()
|
115 |
-
|
116 |
-
# Computing features and embeddings
|
117 |
-
feats = self.mods.compute_features(wavs)
|
118 |
-
feats = self.mods.mean_var_norm(feats, wav_lens)
|
119 |
-
embeddings = self.mods.embedding_model(feats, wav_lens)
|
120 |
-
if normalize:
|
121 |
-
embeddings = self.hparams.mean_var_norm_emb(
|
122 |
-
embeddings,
|
123 |
-
torch.ones(embeddings.shape[0], device=self.device)
|
124 |
-
)
|
125 |
-
return embeddings
|
126 |
-
|
127 |
-
|
128 |
|
129 |
@spaces.GPU
|
130 |
def sample_diffusion(tse_model, tsr_model, autoencoder, std, scheduler, device,
|
|
|
20 |
from huggingface_hub import snapshot_download
|
21 |
import time
|
22 |
|
23 |
+
|
24 |
+
class Encoder(Pretrained):
|
25 |
+
|
26 |
+
MODULES_NEEDED = [
|
27 |
+
"compute_features",
|
28 |
+
"mean_var_norm",
|
29 |
+
"embedding_model"
|
30 |
+
]
|
31 |
+
|
32 |
+
def __init__(self, *args, **kwargs):
|
33 |
+
super().__init__(*args, **kwargs)
|
34 |
+
|
35 |
+
def encode_batch(self, wavs, wav_lens=None, normalize=False):
|
36 |
+
# Manage single waveforms in input
|
37 |
+
if len(wavs.shape) == 1:
|
38 |
+
wavs = wavs.unsqueeze(0)
|
39 |
+
|
40 |
+
# Assign full length if wav_lens is not assigned
|
41 |
+
if wav_lens is None:
|
42 |
+
wav_lens = torch.ones(wavs.shape[0], device=self.device)
|
43 |
+
|
44 |
+
# Storing waveform in the specified device
|
45 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
46 |
+
wavs = wavs.float()
|
47 |
+
|
48 |
+
# Computing features and embeddings
|
49 |
+
feats = self.mods.compute_features(wavs)
|
50 |
+
feats = self.mods.mean_var_norm(feats, wav_lens)
|
51 |
+
embeddings = self.mods.embedding_model(feats, wav_lens)
|
52 |
+
if normalize:
|
53 |
+
embeddings = self.hparams.mean_var_norm_emb(
|
54 |
+
embeddings,
|
55 |
+
torch.ones(embeddings.shape[0], device=self.device)
|
56 |
+
)
|
57 |
+
return embeddings
|
58 |
+
|
59 |
+
|
60 |
parser = argparse.ArgumentParser()
|
61 |
# pre-trained model path
|
62 |
parser.add_argument('--eta', type=int, default=0)
|
|
|
126 |
_ = noise_scheduler.add_noise(latents, noise, timesteps)
|
127 |
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
@spaces.GPU
|
131 |
def sample_diffusion(tse_model, tsr_model, autoencoder, std, scheduler, device,
|