nicolasbuitragob commited on
Commit
1f26869
·
1 Parent(s): 5504846

salto alto exercise

Browse files
Files changed (1) hide show
  1. tasks.py +154 -80
tasks.py CHANGED
@@ -52,7 +52,11 @@ def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
52
  logger.info(f"Video sent to {url}")
53
 
54
 
55
- def process_salto_alto(file_name: str, vitpose: VitPose, player_data: dict, repetitions: int, exercise_id: str):
 
 
 
 
56
  """
57
  Process a high jump exercise video using VitPose for pose estimation.
58
 
@@ -73,37 +77,80 @@ def process_salto_alto(file_name: str, vitpose: VitPose, player_data: dict, repe
73
  body_mass_kg = player_data.get('weight', 64) # Peso corporal en kg
74
 
75
  # Generate output paths
76
- output_video = file_name.replace('.mp4', '_analyzed.mp4')
77
- output_json = output_video.replace('.mp4', '.json')
78
-
79
  # Process the video and get the jump metrics
80
- results_dict = analyze_jump_video(
81
- model=model,
82
- input_video=file_name,
83
- output_video=output_video,
84
- reference_height=reference_height,
85
- body_mass_kg=body_mass_kg
86
- )
87
-
88
- # Save results to JSON
89
- with open(output_json, 'w') as f:
90
- json.dumps(results_dict, indent=4)
91
-
92
- # Print summary
93
- print("\nResultados finales:")
94
- print(f"Salto Relativo máximo: {results_dict['jump_metrics']['max_relative_jump']:.2f}m")
95
- print(f"Salto Alto máximo: {results_dict['jump_metrics']['max_high_jump']:.2f}m")
96
- print(f"Potencia Sayer (estimada): {results_dict['jump_metrics']['peak_power_sayer']:.2f} W")
97
-
98
- # Return results dictionary
99
- return {
100
- "output_video": output_video,
101
- "output_json": output_json,
102
- "metrics": results_dict
103
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
 
106
- def analyze_jump_video(model, input_video, output_video, reference_height=1.68, body_mass_kg=64):
 
 
 
 
 
 
 
 
107
  """
108
  Analyze a jump video to calculate various jump metrics.
109
 
@@ -156,19 +203,13 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
156
  # Process first frame to calibrate
157
  output = model(frame) # Detect pose in first frame
158
  keypoints = output.keypoints_xy.float().cpu().numpy()
159
- print(f"keypoints {keypoints}")
160
  labels = model.pose_estimator_config.label2id
161
- print(labels)
162
  nose_keypoint = labels["Nose"]
163
  L_ankle_keypoint = labels["L_Ankle"]
164
  R_ankle_keypoint = labels["R_Ankle"]
165
  L_shoulder_keypoint = labels["L_Shoulder"]
166
  R_shoulder_keypoint = labels["R_Shoulder"]
167
- print(f"nose_keypoint {nose_keypoint}")
168
- print(f"L_ankle_keypoint {L_ankle_keypoint}")
169
- print(f"R_ankle_keypoint {R_ankle_keypoint}")
170
- print(f"L_shoulder_keypoint {L_shoulder_keypoint}")
171
- print(f"R_shoulder_keypoint {R_shoulder_keypoint}")
172
 
173
  if (
174
  keypoints is not None
@@ -178,9 +219,7 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
178
  kpts_first = keypoints[0]
179
  if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0: # Nose and ankles
180
  initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
181
- print(f"initial_person_height_px {initial_person_height_px}")
182
- PX_PER_METER = float(initial_person_height_px) / float(reference_height)
183
- print(f"Escala calculada: {PX_PER_METER:.2f} px/m")
184
  if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0: # Left (5) and right (6) shoulders
185
  initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
186
  initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
@@ -188,8 +227,8 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
188
  if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
189
  print("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
190
  cap.release()
191
- return {}
192
-
193
  # Reset video for processing
194
  cap.release()
195
  cap = cv2.VideoCapture(input_video)
@@ -210,10 +249,9 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
210
  head_y_buffer = []
211
  velocity_vertical = 0.0
212
  peak_power_sayer = 0.0 # Initialize Sayer power
213
- person_detected = False # Flag to indicate if person was detected in any frame
214
  current_power = 0.0
215
  repetition_count = 0
216
- jump_in_air = False
217
 
218
  # Process each frame
219
  while cap.isOpened():
@@ -222,6 +260,8 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
222
  break
223
 
224
  annotated_frame = frame.copy()
 
 
225
 
226
  # Add try-except block around the model inference to catch any model errors
227
  try:
@@ -233,8 +273,6 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
233
  len(keypoints) > 0 and
234
  len(keypoints[0]) > 0 and
235
  keypoints.size > 0): # Check if array is not empty
236
-
237
- person_detected = True
238
  kpts = keypoints[0]
239
 
240
  # Make sure all required keypoints are detected
@@ -257,8 +295,6 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
257
  current_ankle_y = min(a[1] for a in ankles)
258
  last_detected_ankles_y = current_ankle_y
259
  current_head_y = nose[1]
260
- current_left_shoulder_x = int(left_shoulder[0])
261
- current_right_shoulder_x = int(right_shoulder[0])
262
 
263
  # Smooth ankle and head positions
264
  ankle_y_history.append(current_ankle_y)
@@ -294,16 +330,17 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
294
  takeoff_head_y = smoothed_head_y
295
  max_jump_height = 0
296
  max_head_height_px = smoothed_head_y
 
297
 
298
  # Detect jump end
299
  if jump_started and relative_ankle_change <= JUMP_THRESHOLD_PERCENT:
300
  # Add to repetition data
301
- salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
302
  repetition_data.append({
303
  "repetition": repetition_count + 1,
304
- "relative_jump_m": round(max_jump_height, 3),
305
- "absolute_jump_m": round(salto_alto, 3),
306
- "peak_power_watts": round(current_power, 1)
307
  })
308
  repetition_count += 1
309
  jump_started = False
@@ -317,7 +354,9 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
317
  max_head_height_px = smoothed_head_y
318
  if relative_jump:
319
  current_power = calculate_peak_power_sayer(relative_jump, body_mass_kg)
320
- if current_power > peak_power_sayer:
 
 
321
  peak_power_sayer = current_power
322
  else:
323
  # Skip processing for this frame - invalid coordinates
@@ -342,13 +381,13 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
342
 
343
  # Calculate metrics and draw overlay even if keypoints weren't detected
344
  # This ensures video continues to show previous metrics
345
- salto_alto = calculate_absolute_jump_height(reference_height, max_jump_height)
346
 
347
  # Draw floating metric boxes
348
  annotated_frame = draw_metrics_overlay(
349
  frame=annotated_frame,
350
  max_jump_height=max_jump_height,
351
- salto_alto=salto_alto,
352
  velocity_vertical=velocity_vertical,
353
  peak_power_sayer=peak_power_sayer,
354
  repetition_count=repetition_count,
@@ -370,31 +409,70 @@ def analyze_jump_video(model, input_video, output_video, reference_height=1.68,
370
  horizontal_offset_factor=HORIZONTAL_OFFSET_FACTOR
371
  )
372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
  out.write(annotated_frame)
374
 
375
  # Prepare results dictionary
376
  results_dict = {
377
- "jump_metrics": {
378
- "max_relative_jump": float(max(0, max_jump_height)),
379
- "max_high_jump": float(max(0, salto_alto)),
380
- "peak_power_sayer": float(peak_power_sayer),
381
- "repetitions": int(repetition_count),
382
- "reference_height": float(reference_height),
383
- "body_mass_kg": float(body_mass_kg),
384
- "px_per_meter": float(PX_PER_METER) if PX_PER_METER is not None else 0.0
385
- },
386
  "video_analysis": {
387
- "input_video": str(input_video),
388
  "output_video": str(output_video),
389
- "fps": float(fps),
390
- "resolution": f"{int(width)}x{int(height)}"
391
  },
392
  "repetition_data": [
393
  {
394
  "repetition": int(rep["repetition"]),
395
- "relative_jump_m": float(rep["relative_jump_m"]),
396
- "absolute_jump_m": float(rep["absolute_jump_m"]),
397
- "peak_power_watts": float(rep["peak_power_watts"])
398
  } for rep in repetition_data
399
  ]
400
  }
@@ -420,23 +498,19 @@ def calculate_peak_power_sayer(jump_height_m, body_mass_kg):
420
  return (60.7 * jump_height_cm) + (45.3 * body_mass_kg) - 2055
421
 
422
 
423
- def calculate_absolute_jump_height(reference_height, relative_jump):
424
  """
425
- Calculate absolute jump height based on reference height and relative jump.
426
 
427
  Args:
428
- reference_height: Reference height in meters
429
- relative_jump: Relative jump height in meters
430
 
431
  Returns:
432
- Absolute jump height in meters
 
433
  """
434
- absolute_jump = float(reference_height) + float(relative_jump)
435
- # Apply validation rule
436
- if absolute_jump > 1.72:
437
- return absolute_jump
438
- else:
439
- return 0
440
 
441
 
442
  def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer,
 
52
  logger.info(f"Video sent to {url}")
53
 
54
 
55
+ def process_salto_alto(file_name: str,
56
+ vitpose: VitPose,
57
+ player_data: dict,
58
+ repetitions: int,
59
+ exercise_id: str) -> dict:
60
  """
61
  Process a high jump exercise video using VitPose for pose estimation.
62
 
 
77
  body_mass_kg = player_data.get('weight', 64) # Peso corporal en kg
78
 
79
  # Generate output paths
80
+ output_video = file_name.replace('.mp4', '_analyzed.mp4')
 
 
81
  # Process the video and get the jump metrics
82
+ # print(f"reference_height: {reference_height}")
83
+ # results_dict = analyze_jump_video(
84
+ # model=model,
85
+ # input_video=file_name,
86
+ # output_video=output_video,
87
+ # player_height= float(reference_height) / 100, #cm to m
88
+ # body_mass_kg= float(body_mass_kg),
89
+ # repetitions=repetitions
90
+ # )
91
+
92
+ results_dict = {'video_analysis': {'output_video': 'user_id_2_player_id_2_exercise_salto_alto_VIDEO-2025-05-19-18-55-47_analyzed.mp4'}, 'repetition_data': [{'repetition': 1, 'distancia_elevada': 0.47999998927116394, 'salto_alto': 2.180000066757202, 'potencia_sayer': 3768.719970703125}, {'repetition': 2, 'distancia_elevada': 0.49000000953674316, 'salto_alto': 2.190000057220459, 'potencia_sayer': 3827.929931640625}, {'repetition': 3, 'distancia_elevada': 0.5099999904632568, 'salto_alto': 2.2100000381469727, 'potencia_sayer': 3915.5}]}
93
+
94
+ print(f"results_dict: {results_dict}")
95
+
96
+
97
+ response = send_results_api(results_dict,
98
+ player_data["id"],
99
+ exercise_id,
100
+ file_name)
101
+
102
+ # os.remove(file_name)
103
+ # os.remove(output_video)
104
+
105
+
106
+ def send_results_api(results_dict: dict,
107
+ player_id: str,
108
+ exercise_id: str,
109
+ video_path: str):
110
+ """
111
+ Updated function to send results to the new webhook endpoint
112
+ """
113
+ url = API_URL + "/excercises/webhooks/video-processed-results"
114
+ logger.info(f"Sending video results to {url}")
115
+
116
+ # Open the video file
117
+ with open(video_path, 'rb') as video_file:
118
+ # Prepare the files dictionary for file upload
119
+ files = {
120
+ 'file': (video_path.split('/')[-1], video_file, 'video/mp4')
121
+ }
122
+
123
+ # Prepare the form data
124
+ data = {
125
+ 'player_id': player_id,
126
+ 'exercise_id': exercise_id,
127
+ 'results': json.dumps(results_dict) # Convert dict to JSON string
128
+ }
129
+
130
+ # Send the request with both files and data
131
+ response = requests.post(
132
+ url,
133
+ headers={"token": API_KEY},
134
+ files=files,
135
+ data=data,
136
+ stream=True
137
+ )
138
+
139
+ logger.info(f"Response: {response.status_code}")
140
+ logger.info(f"Response: {response.text}")
141
+ return response
142
+
143
 
144
 
145
+
146
+
147
+
148
+ def analyze_jump_video(model: VitPose,
149
+ input_video: str,
150
+ output_video: str,
151
+ player_height: float,
152
+ body_mass_kg: float,
153
+ repetitions: int) -> dict | None:
154
  """
155
  Analyze a jump video to calculate various jump metrics.
156
 
 
203
  # Process first frame to calibrate
204
  output = model(frame) # Detect pose in first frame
205
  keypoints = output.keypoints_xy.float().cpu().numpy()
 
206
  labels = model.pose_estimator_config.label2id
207
+
208
  nose_keypoint = labels["Nose"]
209
  L_ankle_keypoint = labels["L_Ankle"]
210
  R_ankle_keypoint = labels["R_Ankle"]
211
  L_shoulder_keypoint = labels["L_Shoulder"]
212
  R_shoulder_keypoint = labels["R_Shoulder"]
 
 
 
 
 
213
 
214
  if (
215
  keypoints is not None
 
219
  kpts_first = keypoints[0]
220
  if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0: # Nose and ankles
221
  initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
222
+ PX_PER_METER = initial_person_height_px / player_height
 
 
223
  if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0: # Left (5) and right (6) shoulders
224
  initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
225
  initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
 
227
  if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
228
  print("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
229
  cap.release()
230
+ return None
231
+
232
  # Reset video for processing
233
  cap.release()
234
  cap = cv2.VideoCapture(input_video)
 
249
  head_y_buffer = []
250
  velocity_vertical = 0.0
251
  peak_power_sayer = 0.0 # Initialize Sayer power
 
252
  current_power = 0.0
253
  repetition_count = 0
254
+ jump_peak_power = 0.0 # Peak power for current jump only
255
 
256
  # Process each frame
257
  while cap.isOpened():
 
260
  break
261
 
262
  annotated_frame = frame.copy()
263
+ if repetition_count == repetitions:
264
+ continue
265
 
266
  # Add try-except block around the model inference to catch any model errors
267
  try:
 
273
  len(keypoints) > 0 and
274
  len(keypoints[0]) > 0 and
275
  keypoints.size > 0): # Check if array is not empty
 
 
276
  kpts = keypoints[0]
277
 
278
  # Make sure all required keypoints are detected
 
295
  current_ankle_y = min(a[1] for a in ankles)
296
  last_detected_ankles_y = current_ankle_y
297
  current_head_y = nose[1]
 
 
298
 
299
  # Smooth ankle and head positions
300
  ankle_y_history.append(current_ankle_y)
 
330
  takeoff_head_y = smoothed_head_y
331
  max_jump_height = 0
332
  max_head_height_px = smoothed_head_y
333
+ jump_peak_power = 0.0 # Reset for this jump
334
 
335
  # Detect jump end
336
  if jump_started and relative_ankle_change <= JUMP_THRESHOLD_PERCENT:
337
  # Add to repetition data
338
+ high_jump = calculate_high_jump(player_height, max_jump_height)
339
  repetition_data.append({
340
  "repetition": repetition_count + 1,
341
+ "distancia_elevada": round(max_jump_height, 2),
342
+ "salto_alto": round(high_jump, 2),
343
+ "potencia_sayer": round(jump_peak_power, 2) # Use jump-specific peak
344
  })
345
  repetition_count += 1
346
  jump_started = False
 
354
  max_head_height_px = smoothed_head_y
355
  if relative_jump:
356
  current_power = calculate_peak_power_sayer(relative_jump, body_mass_kg)
357
+ if current_power > jump_peak_power: # Track peak for THIS jump
358
+ jump_peak_power = current_power
359
+ if current_power > peak_power_sayer: # Keep global peak too
360
  peak_power_sayer = current_power
361
  else:
362
  # Skip processing for this frame - invalid coordinates
 
381
 
382
  # Calculate metrics and draw overlay even if keypoints weren't detected
383
  # This ensures video continues to show previous metrics
384
+ high_jump = calculate_high_jump(player_height, max_jump_height)
385
 
386
  # Draw floating metric boxes
387
  annotated_frame = draw_metrics_overlay(
388
  frame=annotated_frame,
389
  max_jump_height=max_jump_height,
390
+ salto_alto=high_jump,
391
  velocity_vertical=velocity_vertical,
392
  peak_power_sayer=peak_power_sayer,
393
  repetition_count=repetition_count,
 
409
  horizontal_offset_factor=HORIZONTAL_OFFSET_FACTOR
410
  )
411
 
412
+ # Draw person skeleton keypoints
413
+ try:
414
+ if keypoints is not None and len(keypoints) > 0 and len(keypoints[0]) > 0:
415
+ # Use the exact keypoint indices
416
+ keypoint_indices = {
417
+ 'L_Ankle': 15, 'L_Ear': 3, 'L_Elbow': 7, 'L_Eye': 1, 'L_Hip': 11,
418
+ 'L_Knee': 13, 'L_Shoulder': 5, 'L_Wrist': 9, 'Nose': 0, 'R_Ankle': 16,
419
+ 'R_Ear': 4, 'R_Elbow': 8, 'R_Eye': 2, 'R_Hip': 12, 'R_Knee': 14,
420
+ 'R_Shoulder': 6, 'R_Wrist': 10
421
+ }
422
+
423
+ # Define skeleton connections (pairs of keypoints that should be connected)
424
+ skeleton_connections = [
425
+ (keypoint_indices["Nose"], keypoint_indices["L_Eye"]),
426
+ (keypoint_indices["Nose"], keypoint_indices["R_Eye"]),
427
+ (keypoint_indices["L_Eye"], keypoint_indices["L_Ear"]),
428
+ (keypoint_indices["R_Eye"], keypoint_indices["R_Ear"]),
429
+ (keypoint_indices["Nose"], keypoint_indices["L_Shoulder"]),
430
+ (keypoint_indices["Nose"], keypoint_indices["R_Shoulder"]),
431
+ (keypoint_indices["L_Shoulder"], keypoint_indices["R_Shoulder"]),
432
+ (keypoint_indices["L_Shoulder"], keypoint_indices["L_Elbow"]),
433
+ (keypoint_indices["R_Shoulder"], keypoint_indices["R_Elbow"]),
434
+ (keypoint_indices["L_Elbow"], keypoint_indices["L_Wrist"]),
435
+ (keypoint_indices["R_Elbow"], keypoint_indices["R_Wrist"]),
436
+ (keypoint_indices["L_Shoulder"], keypoint_indices["L_Hip"]),
437
+ (keypoint_indices["R_Shoulder"], keypoint_indices["R_Hip"]),
438
+ (keypoint_indices["L_Hip"], keypoint_indices["R_Hip"]),
439
+ (keypoint_indices["L_Hip"], keypoint_indices["L_Knee"]),
440
+ (keypoint_indices["R_Hip"], keypoint_indices["R_Knee"]),
441
+ (keypoint_indices["L_Knee"], keypoint_indices["L_Ankle"]),
442
+ (keypoint_indices["R_Knee"], keypoint_indices["R_Ankle"])
443
+ ]
444
+
445
+ kpts = keypoints[0]
446
+ # Draw points
447
+ for i, point in enumerate(kpts):
448
+ if point[0] > 0 and point[1] > 0: # Only draw if keypoint is valid
449
+ cv2.circle(annotated_frame, (int(point[0]), int(point[1])), 5, GREEN, -1)
450
+
451
+ # Draw connections
452
+ for connection in skeleton_connections:
453
+ start_idx, end_idx = connection
454
+ if (start_idx < len(kpts) and end_idx < len(kpts) and
455
+ kpts[start_idx][0] > 0 and kpts[start_idx][1] > 0 and
456
+ kpts[end_idx][0] > 0 and kpts[end_idx][1] > 0):
457
+ start_point = (int(kpts[start_idx][0]), int(kpts[start_idx][1]))
458
+ end_point = (int(kpts[end_idx][0]), int(kpts[end_idx][1]))
459
+ cv2.line(annotated_frame, start_point, end_point, YELLOW, 2)
460
+ except Exception as e:
461
+ print(f"Error drawing skeleton: {e}")
462
+
463
  out.write(annotated_frame)
464
 
465
  # Prepare results dictionary
466
  results_dict = {
 
 
 
 
 
 
 
 
 
467
  "video_analysis": {
 
468
  "output_video": str(output_video),
 
 
469
  },
470
  "repetition_data": [
471
  {
472
  "repetition": int(rep["repetition"]),
473
+ "distancia_elevada": float(rep["distancia_elevada"]),
474
+ "salto_alto": float(rep["salto_alto"]),
475
+ "potencia_sayer": float(rep["potencia_sayer"])
476
  } for rep in repetition_data
477
  ]
478
  }
 
498
  return (60.7 * jump_height_cm) + (45.3 * body_mass_kg) - 2055
499
 
500
 
501
+ def calculate_high_jump(player_height:float, max_jump_height:float) -> float:
502
  """
503
+ Calculate the high jump height based on the player height and the max jump height.
504
 
505
  Args:
506
+ player_height: Player height in meters
507
+ max_jump_height: Relative jump height in meters
508
 
509
  Returns:
510
+ the high jump height in meters
511
+
512
  """
513
+ return player_height + max_jump_height
 
 
 
 
 
514
 
515
 
516
  def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer,