Spaces:
Sleeping
Sleeping
File size: 37,423 Bytes
f7db7af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
import shutil
import bm25s
from bm25s.hf import BM25HF
import threading, re, time, concurrent.futures, requests, os, hashlib, traceback, io, zipfile, subprocess, tempfile, json, fitz
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
from datasets import load_dataset, Dataset
from datasets.data_files import EmptyDatasetError
from dotenv import load_dotenv
load_dotenv()
class TDocIndexer:
def __init__(self, max_workers=33):
self.indexer_length = 0
self.dataset = "OrganizedProgrammers/3GPPTDocLocation"
self.indexer = self.load_indexer()
self.main_ftp_url = "https://3gpp.org/ftp"
self.valid_doc_pattern = re.compile(r'^(S[1-6P]|C[1-6P]|R[1-6P])-\d+', flags=re.IGNORECASE)
self.max_workers = max_workers
self.print_lock = threading.Lock()
self.indexer_lock = threading.Lock()
self.total_indexed = 0
self.processed_count = 0
self.total_count = 0
def load_indexer(self):
self.indexer_length = 0
all_docs = {}
tdoc_locations = load_dataset(self.dataset)
tdoc_locations = tdoc_locations["train"].to_list()
for doc in tdoc_locations:
self.indexer_length += 1
all_docs[doc["doc_id"]] = doc["url"]
return all_docs
def save_indexer(self):
"""Save the updated index"""
data = []
for doc_id, url in self.indexer.items():
data.append({"doc_id": doc_id, "url": url})
dataset = Dataset.from_list(data)
dataset.push_to_hub(self.dataset, token=os.environ["HF"])
self.indexer = self.load_indexer()
def get_docs_from_url(self, url):
try:
response = requests.get(url, verify=False, timeout=10)
soup = BeautifulSoup(response.text, "html.parser")
return [item.get_text() for item in soup.select("tr td a")]
except Exception as e:
with self.print_lock:
print(f"Erreur lors de l'accès à {url}: {e}")
return []
def is_valid_document_pattern(self, filename):
return bool(self.valid_doc_pattern.match(filename))
def is_zip_file(self, filename):
return filename.lower().endswith('.zip')
def extract_doc_id(self, filename):
if self.is_valid_document_pattern(filename):
match = self.valid_doc_pattern.match(filename)
if match:
# Retourner le motif complet (comme S1-12345)
full_id = filename.split('.')[0] # Enlever l'extension si présente
return full_id.split('_')[0] # Enlever les suffixes après underscore si présents
return None
def process_zip_files(self, files_list, base_url, workshop=False):
"""Traiter une liste de fichiers pour trouver et indexer les ZIP valides"""
indexed_count = 0
for file in files_list:
if file in ['./', '../', 'ZIP/', 'zip/']:
continue
# Vérifier si c'est un fichier ZIP et s'il correspond au motif
if self.is_zip_file(file) and (self.is_valid_document_pattern(file) or workshop):
file_url = f"{base_url}/{file}"
# Extraire l'ID du document
doc_id = self.extract_doc_id(file)
if doc_id is None:
doc_id = file.split('.')[0]
if doc_id:
# Vérifier si ce fichier est déjà indexé
with self.indexer_lock:
if doc_id in self.indexer and self.indexer[doc_id] == file_url:
continue
# Ajouter ou mettre à jour l'index
self.indexer[doc_id] = file_url
indexed_count += 1
self.total_indexed += 1
return indexed_count
def process_meeting(self, meeting, wg_url, workshop=False):
"""Traiter une réunion individuelle avec multithreading"""
try:
if meeting in ['./', '../']:
return 0
meeting_url = f"{wg_url}/{meeting}"
with self.print_lock:
print(f"Vérification du meeting: {meeting}")
# Vérifier le contenu de la réunion
meeting_contents = self.get_docs_from_url(meeting_url)
key = None
if "docs" in [x.lower() for x in meeting_contents]:
key = "docs"
elif "tdocs" in [x.lower() for x in meeting_contents]:
key = "tdocs"
elif "tdoc" in [x.lower() for x in meeting_contents]:
key = "tdoc"
if key is not None:
docs_url = f"{meeting_url}/{key}"
with self.print_lock:
print(f"Vérification des documents présent dans {docs_url}")
# Récupérer la liste des fichiers dans le dossier Docs
docs_files = self.get_docs_from_url(docs_url)
# 1. Indexer les fichiers ZIP directement dans le dossier Docs
docs_indexed_count = self.process_zip_files(docs_files, docs_url, workshop)
if docs_indexed_count > 0:
with self.print_lock:
print(f"{docs_indexed_count} fichiers trouvés")
# 2. Vérifier le sous-dossier ZIP s'il existe
if "zip" in [x.lower() for x in docs_files]:
zip_url = f"{docs_url}/zip"
with self.print_lock:
print(f"Vérification du dossier ./zip: {zip_url}")
# Récupérer les fichiers dans le sous-dossier ZIP
zip_files = self.get_docs_from_url(zip_url)
# Indexer les fichiers ZIP dans le sous-dossier ZIP
zip_indexed_count = self.process_zip_files(zip_files, zip_url, workshop)
if zip_indexed_count > 0:
with self.print_lock:
print(f"{zip_indexed_count} fichiers trouvés")
# Mise à jour du compteur de progression
with self.indexer_lock:
self.processed_count += 1
# Affichage de la progression
with self.print_lock:
progress = (self.processed_count / self.total_count) * 100 if self.total_count > 0 else 0
print(f"\rProgression: {self.processed_count}/{self.total_count} réunions traitées ({progress:.1f}%)")
return 1 # Réunion traitée avec succès
except Exception as e:
with self.print_lock:
print(f"\nErreur lors du traitement de la réunion {meeting}: {str(e)}")
return 0
def process_workgroup(self, wg, main_url):
"""Traiter un groupe de travail avec multithreading pour ses réunions"""
if wg in ['./', '../']:
return
wg_url = f"{main_url}/{wg}"
with self.print_lock:
print(f"Vérification du working group: {wg}")
# Récupérer les dossiers de réunion
meeting_folders = self.get_docs_from_url(wg_url)
# Ajouter au compteur total
self.total_count += len([m for m in meeting_folders if m not in ['./', '../']])
# Utiliser ThreadPoolExecutor pour traiter les réunions en parallèle
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = [executor.submit(self.process_meeting, meeting, wg_url)
for meeting in meeting_folders if meeting not in ['./', '../']]
# Attendre que toutes les tâches soient terminées
concurrent.futures.wait(futures)
def index_all_tdocs(self):
"""Indexer tous les documents ZIP dans la structure FTP 3GPP avec multithreading"""
print("Démarrage de l'indexation des TDocs 3GPP complète")
start_time = time.time()
docs_count_before = self.indexer_length
# Principaux groupes TSG
main_groups = ["tsg_sa", "tsg_ct", "tsg_ran"] # Ajouter d'autres si nécessaire
for main_tsg in main_groups:
print(f"Indexation de {main_tsg.upper()}...")
main_url = f"{self.main_ftp_url}/{main_tsg}"
# Récupérer les groupes de travail
workgroups = self.get_docs_from_url(main_url)
# Traiter chaque groupe de travail séquentiellement
# (mais les réunions à l'intérieur seront traitées en parallèle)
for wg in workgroups:
self.process_workgroup(wg, main_url)
docs_count_after = len(self.indexer)
new_docs_count = abs(docs_count_after - docs_count_before)
print(f"Indexation terminée en {time.time() - start_time:.2f} secondes")
print(f"Nouveaux documents ZIP indexés: {new_docs_count}")
print(f"Total des documents dans l'index: {docs_count_after}")
return self.indexer
def index_all_workshops(self):
print("Démarrage de l'indexation des workshops ZIP 3GPP...")
start_time = time.time()
docs_count_before = len(self.indexer)
print("\nIndexation du dossier 'workshop'")
main_url = f"{self.main_ftp_url}/workshop"
# Récupérer les dossiers de réunion
meeting_folders = self.get_docs_from_url(main_url)
# Ajouter au compteur total
self.total_count += len([m for m in meeting_folders if m not in ['./', '../']])
# Utiliser ThreadPoolExecutor pour traiter les réunions en parallèle
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = [executor.submit(self.process_meeting, meeting, main_url, workshop=True)
for meeting in meeting_folders if meeting not in ['./', '../']]
concurrent.futures.wait(futures)
docs_count_after = len(self.indexer)
new_docs_count = docs_count_after - docs_count_before
print(f"\nIndexation terminée en {time.time() - start_time:.2f} secondes")
print(f"Nouveaux documents ZIP indexés: {new_docs_count}")
print(f"Total des documents dans l'index: {docs_count_after}")
return self.indexer
class Spec3GPPIndexer:
def __init__(self, max_workers=16):
self.spec_contents = load_dataset("OrganizedProgrammers/3GPPSpecContent")["train"].to_list()
self.documents_by_spec_num = self._make_doc_index(self.spec_contents)
self.indexed_specifications = {}
self.specifications_passed = set()
self.processed_count = 0
self.total_count = 0
self.DICT_LOCK = threading.Lock()
self.DOCUMENT_LOCK = threading.Lock()
self.STOP_EVENT = threading.Event()
self.max_workers = max_workers
self.LIBREOFFICE_SEMAPHORE = threading.Semaphore(self.max_workers)
def _make_doc_index(self, specs):
doc_index = {}
for section in specs:
if section["doc_id"] not in doc_index:
doc_index[section["doc_id"]] = {"content": {section["section"]: section["content"]}, "hash": section["hash"]}
else:
doc_index[section["doc_id"]]["content"][section["section"]] = section["content"]
return doc_index
@staticmethod
def version_to_code(version_str):
chars = "0123456789abcdefghijklmnopqrstuvwxyz"
parts = version_str.split('.')
if len(parts) != 3:
return None
try:
x, y, z = [int(p) for p in parts]
except ValueError:
return None
if x < 36 and y < 36 and z < 36:
return f"{chars[x]}{chars[y]}{chars[z]}"
else:
return f"{str(x).zfill(2)}{str(y).zfill(2)}{str(z).zfill(2)}"
@staticmethod
def hasher(specification, version_code):
return hashlib.md5(f"{specification}{version_code}".encode()).hexdigest()
@staticmethod
def get_scope(content):
for title, text in content.items():
if title.lower().endswith("scope"):
return text
return ""
def get_text(self, specification, version_code):
if self.STOP_EVENT.is_set():
return []
doc_id = specification
series = doc_id.split(".")[0]
url = f"https://www.3gpp.org/ftp/Specs/archive/{series}_series/{doc_id}/{doc_id.replace('.', '')}-{version_code}.zip"
try:
response = requests.get(url, verify=False)
if response.status_code != 200:
return []
zip_bytes = io.BytesIO(response.content)
with zipfile.ZipFile(zip_bytes) as zip_file:
# Filtrer uniquement fichiers .doc et .docx
docx_files = [f for f in zip_file.namelist() if f.lower().endswith(('.doc', '.docx'))]
if not docx_files:
return []
full_text = []
for doc_file in docx_files:
with tempfile.TemporaryDirectory() as tmpdir:
extracted_path = os.path.join(tmpdir, os.path.basename(doc_file))
with open(extracted_path, 'wb') as f:
f.write(zip_file.read(doc_file))
# Profil libreoffice temp dédié
profile_dir = tempfile.mkdtemp(prefix="libreoffice_profile_")
try:
with self.LIBREOFFICE_SEMAPHORE:
cmd = [
'soffice',
'--headless',
f'-env:UserInstallation=file://{profile_dir}',
'--convert-to', 'txt:Text',
'--outdir', tmpdir,
extracted_path
]
subprocess.run(cmd, check=True, timeout=60*5, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
txt_file = os.path.splitext(extracted_path)[0] + '.txt'
if os.path.exists(txt_file):
with open(txt_file, 'r', encoding='utf-8', errors='ignore') as ftxt:
full_text.extend(ftxt.readlines())
finally:
shutil.rmtree(profile_dir, ignore_errors=True)
return full_text
except Exception as e:
print(f"Error getting text for {specification} v{version_code}: {e}")
return []
def get_spec_content(self, specification, version_code):
if self.STOP_EVENT.is_set():
return {}
text = self.get_text(specification, version_code)
if not text:
return {}
chapters = []
chapter_regex = re.compile(r"^(\d+[a-z]?(?:\.\d+)*)\t[A-Z0-9][\ \S]+[^\.]$")
for i, line in enumerate(text):
if chapter_regex.fullmatch(line):
chapters.append((i, line))
document = {}
for i in range(len(chapters)):
start_index, chapter_title = chapters[i]
end_index = chapters[i+1][0] if i+1 < len(chapters) else len(text)
content_lines = text[start_index + 1:end_index]
document[chapter_title.replace("\t", " ")] = "\n".join(content_lines)
return document
def fetch_spec_table(self):
response = requests.get(
'https://www.3gpp.org/dynareport?code=status-report.htm',
headers={"User-Agent": 'Mozilla/5.0'},
verify=False
)
dfs = pd.read_html(io.StringIO(response.text))
for x in range(len(dfs)):
dfs[x] = dfs[x].replace({np.nan: None})
columns_needed = [0, 1, 2, 3, 4]
extracted_dfs = [df.iloc[:, columns_needed] for df in dfs]
columns = [x.replace("\xa0", "_") for x in extracted_dfs[0].columns]
specifications = []
for df in extracted_dfs:
for index, row in df.iterrows():
doc = row.to_list()
doc_dict = dict(zip(columns, doc))
specifications.append(doc_dict)
return specifications
def process_specification(self, spec):
if self.STOP_EVENT.is_set():
return
try:
doc_id = str(spec['spec_num'])
version_code = self.version_to_code(str(spec['vers']))
if not version_code:
with self.DICT_LOCK:
self.processed_count += 1
return
document = None
already_indexed = False
with self.DOCUMENT_LOCK:
doc_in_cache = doc_id in self.documents_by_spec_num and \
self.documents_by_spec_num[doc_id]["hash"] == self.hasher(doc_id, version_code)
if doc_in_cache and doc_id not in self.specifications_passed:
document = self.documents_by_spec_num[doc_id]
self.specifications_passed.add(doc_id)
already_indexed = True
elif doc_id not in self.specifications_passed:
doc_content = self.get_spec_content(doc_id, version_code)
if doc_content:
document = {"content": doc_content, "hash": self.hasher(doc_id, version_code)}
with self.DOCUMENT_LOCK:
self.documents_by_spec_num[doc_id] = document
self.specifications_passed.add(doc_id)
already_indexed = False
if document:
url = f"https://www.3gpp.org/ftp/Specs/archive/{doc_id.split('.')[0]}_series/{doc_id}/{doc_id.replace('.', '')}-{version_code}.zip"
metadata = {
"id": doc_id,
"title": spec.get("title", ""),
"type": spec.get("type", ""),
"version": str(spec.get("vers", "")),
"working_group": spec.get("WG", ""),
"url": url,
"scope": self.get_scope(document["content"])
}
key = f"{doc_id}+-+{spec.get('title', '')}+-+{spec.get('type', '')}+-+{spec.get('vers', '')}+-+{spec.get('WG', '')}"
with self.DICT_LOCK:
self.indexed_specifications[key] = metadata
with self.DICT_LOCK:
self.processed_count += 1
status = "already indexed" if already_indexed else "indexed now"
print(f"Spec {doc_id} ({spec.get('title', '')}): {status} - Progress {self.processed_count}/{self.total_count}")
except Exception as e:
traceback.print_exc()
print(f"Error processing spec {spec.get('spec_num')} v{spec.get('vers')}: {e}")
with self.DICT_LOCK:
self.processed_count += 1
print(f"Progress: {self.processed_count}/{self.total_count} specs processed")
def get_document(self, spec_id: str, spec_title: str):
text = [f"{spec_id} - {spec_title}\n"]
for section in self.spec_contents:
if spec_id == section["doc_id"]:
text.extend([f"{section['section']}\n\n{section['content']}"])
return text
def create_bm25_index(self):
dataset_metadata = self.indexed_specifications.values()
unique_specs = set()
corpus_json = []
for specification in dataset_metadata:
if specification['id'] in unique_specs: continue
for section in self.spec_contents:
if specification['id'] == section['doc_id']:
corpus_json.append({"text": f"{section['section']}\n{section['content']}", "metadata": {
"id": specification['id'],
"title": specification['title'],
"section_title": section['section'],
"version": specification['version'],
"type": specification['type'],
"working_group": specification['working_group'],
"url": specification['url'],
"scope": specification['scope']
}})
corpus_text = [doc["text"] for doc in corpus_json]
corpus_tokens = bm25s.tokenize(corpus_text, stopwords="en")
print("Indexing BM25")
retriever = BM25HF(corpus=corpus_json)
retriever.index(corpus_tokens)
retriever.save_to_hub("OrganizedProgrammers/3GPPBM25IndexSections", token=os.environ.get("HF"))
unique_specs = set()
corpus_json = []
for specification in dataset_metadata:
if specification['id'] in unique_specs: continue
text_list = self.get_document(specification['id'], specification['title'])
text = "\n".join(text_list)
if len(text_list) == 1: continue
corpus_json.append({"text": text, "metadata": specification})
unique_specs.add(specification['id'])
corpus_text = [doc["text"] for doc in corpus_json]
corpus_tokens = bm25s.tokenize(corpus_text, stopwords="en")
print("Indexing BM25")
retriever = BM25HF(corpus=corpus_json)
retriever.index(corpus_tokens)
retriever.save_to_hub("OrganizedProgrammers/3GPPBM25IndexSingle", token=os.environ.get("HF"))
def run(self):
print("Fetching specification tables from 3GPP...")
specifications = self.fetch_spec_table()
self.total_count = len(specifications)
print(f"Processing {self.total_count} specs with {self.max_workers} threads...")
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = [executor.submit(self.process_specification, spec) for spec in specifications]
for f in concurrent.futures.as_completed(futures):
if self.STOP_EVENT.is_set():
break
print("All specs processed.")
# Sauvegarde (identique au script original)
def save(self):
print("Saving indexed data...")
flat_metadata = [metadata for metadata in self.indexed_specifications.values()]
flat_docs = []
print("Flatting doc contents")
for doc_id, data in self.documents_by_spec_num.items():
for title, content in data["content"].items():
flat_docs.append({"hash": data["hash"], "doc_id": doc_id, "section": title, "content": content})
print("Creating datasets ...")
push_spec_content = Dataset.from_list(flat_docs)
push_spec_metadata = Dataset.from_list(flat_metadata)
# Token handling assumed set in environment
print("Pushing ...")
push_spec_content.push_to_hub("OrganizedProgrammers/3GPPSpecContent", token=os.environ["HF"])
push_spec_metadata.push_to_hub("OrganizedProgrammers/3GPPSpecMetadata", token=os.environ["HF"])
self.spec_contents = load_dataset("OrganizedProgrammers/3GPPSpecContent")["train"].to_list()
self.documents_by_spec_num = self._make_doc_index(self.spec_contents)
print("Save finished.")
class SpecETSIIndexer:
def __init__(self, max_workers=16):
self.session = requests.Session()
self.session.verify = False
self.spec_contents = load_dataset("OrganizedProgrammers/ETSISpecContent")["train"].to_list()
self.documents_by_spec_num = self._make_doc_index(self.spec_contents)
self.indexed_specifications = {}
self.specifications_passed = set()
self.processed_count = 0
self.total_count = 0
self.DICT_LOCK = threading.Lock()
self.DOCUMENT_LOCK = threading.Lock()
self.STOP_EVENT = threading.Event()
self.max_workers = max_workers
self.df = self._fetch_spec_table()
def _make_doc_index(self, specs):
doc_index = {}
for section in specs:
if section["doc_id"] not in doc_index:
doc_index[section["doc_id"]] = {"content": {section["section"]: section["content"]}, "hash": section["hash"]}
else:
doc_index[section["doc_id"]]["content"][section["section"]] = section["content"]
return doc_index
def _fetch_spec_table(self):
# Connexion login et récupération CSV TS/TR
print("Connexion login ETSI...")
self.session.post(
"https://portal.etsi.org/ETSIPages/LoginEOL.ashx",
verify=False,
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) ..."},
data=json.dumps({"username": os.environ.get("EOL_USER"), "password": os.environ.get("EOL_PASSWORD")}),
)
print("Récupération des métadonnées TS/TR …")
url_ts = "https://www.etsi.org/?option=com_standardssearch&view=data&format=csv&includeScope=1&page=1&search=&title=1&etsiNumber=1&content=0&version=0&onApproval=0&published=1&withdrawn=0&historical=0&isCurrent=1&superseded=0&harmonized=0&keyword=&TB=&stdType=TS&frequency=&mandate=&collection=&sort=1"
url_tr = url_ts.replace("stdType=TS", "stdType=TR")
data_ts = self.session.get(url_ts, verify=False).content
data_tr = self.session.get(url_tr, verify=False).content
df_ts = pd.read_csv(io.StringIO(data_ts.decode('utf-8')), sep=";", skiprows=1, index_col=False)
df_tr = pd.read_csv(io.StringIO(data_tr.decode('utf-8')), sep=";", skiprows=1, index_col=False)
backup_ts = df_ts["ETSI deliverable"]
backup_tr = df_tr["ETSI deliverable"]
df_ts["ETSI deliverable"] = df_ts["ETSI deliverable"].str.extract(r"\s*ETSI TS (\d+ \d+(?:-\d+(?:-\d+)?)?)")
df_tr["ETSI deliverable"] = df_tr["ETSI deliverable"].str.extract(r"\s*ETSI TR (\d+ \d+(?:-\d+(?:-\d+)?)?)")
version1 = backup_ts.str.extract(r"\s*ETSI TS \d+ \d+(?:-\d+(?:-\d+)?)? V(\d+\.\d+\.\d+)")
version2 = backup_tr.str.extract(r"\s*ETSI TR \d+ \d+(?:-\d+(?:-\d+)?)? V(\d+\.\d+\.\d+)")
df_ts["Version"] = version1[0]
df_tr["Version"] = version2[0]
def ver_tuple(v):
return tuple(map(int, v.split(".")))
df_ts["temp"] = df_ts["Version"].apply(ver_tuple)
df_tr["temp"] = df_tr["Version"].apply(ver_tuple)
df_ts["Type"] = "TS"
df_tr["Type"] = "TR"
df = pd.concat([df_ts, df_tr])
unique_df = df.loc[df.groupby("ETSI deliverable")["temp"].idxmax()]
unique_df = unique_df.drop(columns="temp")
unique_df = unique_df[(~unique_df["title"].str.contains("3GPP", case=True, na=False))]
df = df.drop(columns="temp")
df = df[(~df["title"].str.contains("3GPP", case=True, na=False))]
return df
@staticmethod
def hasher(specification: str, version: str):
return hashlib.md5(f"{specification}{version}".encode()).hexdigest()
@staticmethod
def get_scope(content):
for title, text in content.items():
if title.lower().endswith("scope"):
return text
return ""
def get_document(self, spec_id: str, spec_title: str):
text = [f"{spec_id} - {spec_title}\n"]
for section in self.spec_contents:
if spec_id == section["doc_id"]:
text.extend([f"{section['section']}\n\n{section['content']}"])
return text
def get_text(self, specification: str):
if self.STOP_EVENT.is_set():
return None, []
print(f"\n[INFO] Tentative de récupération de la spécification {specification}", flush=True)
try:
# Récupérer la ligne avec le bon lien PDF
row = self.df[self.df["ETSI deliverable"] == specification]
if row.empty:
print(f"[WARN] Spécification {specification} absente du tableau")
return None, []
pdf_link = row.iloc[0]["PDF link"]
response = self.session.get(
pdf_link,
headers={"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ...'}
)
if response.status_code != 200:
print(f"[ERREUR] Echec du téléchargement du PDF pour {specification}.")
return None, []
pdf = fitz.open(stream=response.content, filetype="pdf")
return pdf, pdf.get_toc()
except Exception as e:
print(f"[ERROR] Échec get_text pour {specification} : {e}", flush=True)
return None, []
def get_spec_content(self, specification: str):
def extract_sections(text, titles):
sections = {}
sorted_titles = sorted(titles, key=lambda t: text.find(t))
for i, title in enumerate(sorted_titles):
start = text.find(title)
if i + 1 < len(sorted_titles):
end = text.find(sorted_titles[i + 1])
sections[re.sub(r"\s+", " ", title)] = re.sub(r"\s+", " ", text[start:end].replace(title, "").strip().rstrip())
else:
sections[re.sub(r"\s+", " ", title)] = re.sub(r"\s+", " ", text[start:].replace(title, "").strip().rstrip())
return sections
if self.STOP_EVENT.is_set():
return {}
print(f"[INFO] Extraction du contenu de {specification}", flush=True)
pdf, doc_toc = self.get_text(specification)
text = []
if not pdf or not doc_toc:
print("[ERREUR] Pas de texte ou table of contents trouvé !")
return {}
# On prend à partir de la première réelle page référencée
first_page = 0
for level, title, page in doc_toc:
first_page = page - 1
break
for page in pdf[first_page:]:
text.append("\n".join([line.strip() for line in page.get_text().splitlines()]))
text = "\n".join(text)
if not text or not doc_toc or self.STOP_EVENT.is_set():
print("[ERREUR] Pas de texte/table of contents récupéré !")
return {}
titles = []
for level, title, page in doc_toc:
if self.STOP_EVENT.is_set():
return {}
if title and title[0].isnumeric() and '\n'.join(title.strip().split(" ", 1)) in text:
titles.append('\n'.join(title.strip().split(" ", 1)))
return extract_sections(text, titles)
def process_specification(self, spec):
if self.STOP_EVENT.is_set():
return
try:
version = spec.get('Version')
if not version: return
doc_id = str(spec.get("ETSI deliverable"))
document = None
already_indexed = False
with self.DOCUMENT_LOCK:
if (doc_id in self.documents_by_spec_num
and self.documents_by_spec_num[doc_id]["hash"] == self.hasher(doc_id, version)
and doc_id not in self.specifications_passed):
document = self.documents_by_spec_num[doc_id]
self.specifications_passed.add(doc_id)
already_indexed = True
elif doc_id in self.specifications_passed:
document = self.documents_by_spec_num[doc_id]
already_indexed = True
else:
document_content = self.get_spec_content(doc_id)
if document_content:
self.documents_by_spec_num[doc_id] = {"content": document_content, "hash": self.hasher(doc_id, version)}
document = {"content": document_content, "hash": self.hasher(doc_id, version)}
self.specifications_passed.add(doc_id)
already_indexed = False
if document:
string_key = f"{doc_id}+-+{spec['title']}+-+{spec['Type']}+-+{spec['Version']}"
metadata = {
"id": str(doc_id),
"title": spec["title"],
"type": spec["Type"],
"version": version,
"url": spec["PDF link"],
"scope": "" if not document else self.get_scope(document["content"])
}
with self.DICT_LOCK:
self.indexed_specifications[string_key] = metadata
with self.DICT_LOCK:
self.processed_count += 1
status = "already indexed" if already_indexed else "indexed now"
print(f"Spec {doc_id} ({spec.get('title', '')}): {status} - Progress {self.processed_count}/{self.total_count}")
except Exception as e:
traceback.print_exc()
print(f"\n[ERREUR] Échec du traitement de {doc_id} {spec.get('Version')}: {e}", flush=True)
with self.DICT_LOCK:
self.processed_count += 1
print(f"Progress: {self.processed_count}/{self.total_count} specs processed")
def run(self):
print("Démarrage indexation ETSI…")
specifications = self.df.to_dict(orient="records")
self.total_count = len(specifications)
print(f"Traitement de {self.total_count} specs avec {self.max_workers} threads...\n")
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = [executor.submit(self.process_specification, spec) for spec in specifications]
for f in concurrent.futures.as_completed(futures):
if self.STOP_EVENT.is_set():
break
print(f"\nAll {self.processed_count}/{self.total_count} specs processed.")
def save(self):
print("\nSauvegarde en cours...", flush=True)
flat_metadata = [metadata for metadata in self.indexed_specifications.values()]
flat_docs = []
for doc_id, data in self.documents_by_spec_num.items():
for title, content in data["content"].items():
flat_docs.append({"hash": data["hash"], "doc_id": doc_id, "section": title, "content": content})
push_spec_content = Dataset.from_list(flat_docs)
push_spec_metadata = Dataset.from_list(flat_metadata)
push_spec_content.push_to_hub("OrganizedProgrammers/ETSISpecContent", token=os.environ["HF"])
push_spec_metadata.push_to_hub("OrganizedProgrammers/ETSISpecMetadata", token=os.environ["HF"])
self.spec_contents = load_dataset("OrganizedProgrammers/ETSISpecContent")["train"].to_list()
self.documents_by_spec_num = self._make_doc_index(self.spec_contents)
print("Sauvegarde terminée.")
def create_bm25_index(self):
dataset_metadata = self.indexed_specifications.values()
unique_specs = set()
corpus_json = []
for specification in dataset_metadata:
if specification['id'] in unique_specs: continue
for section in self.spec_contents:
if specification['id'] == section['doc_id']:
corpus_json.append({"text": f"{section['section']}\n{section['content']}", "metadata": {
"id": specification['id'],
"title": specification['title'],
"section_title": section['section'],
"version": specification['version'],
"type": specification['type'],
"url": specification['url'],
"scope": specification['scope']
}})
corpus_text = [doc["text"] for doc in corpus_json]
corpus_tokens = bm25s.tokenize(corpus_text, stopwords="en")
print("Indexing BM25")
retriever = BM25HF(corpus=corpus_json)
retriever.index(corpus_tokens)
retriever.save_to_hub("OrganizedProgrammers/ETSIBM25IndexSections", token=os.environ.get("HF"))
unique_specs = set()
corpus_json = []
for specification in dataset_metadata:
if specification['id'] in unique_specs: continue
text_list = self.get_document(specification['id'], specification['title'])
text = "\n".join(text_list)
if len(text_list) == 1: continue
corpus_json.append({"text": text, "metadata": specification})
unique_specs.add(specification['id'])
corpus_text = [doc["text"] for doc in corpus_json]
corpus_tokens = bm25s.tokenize(corpus_text, stopwords="en")
print("Indexing BM25")
retriever = BM25HF(corpus=corpus_json)
retriever.index(corpus_tokens)
retriever.save_to_hub("OrganizedProgrammers/ETSIBM25IndexSingle", token=os.environ.get("HF"))
|