Spaces:
Sleeping
Sleeping
Delete scoring_specificity.py
Browse files- scoring_specificity.py +0 -118
scoring_specificity.py
DELETED
|
@@ -1,118 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import uvicorn
|
| 3 |
-
from fastapi import FastAPI, HTTPException
|
| 4 |
-
from pydantic import BaseModel
|
| 5 |
-
from typing import List, Dict, Union
|
| 6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# Definition of Pydantic data models
|
| 11 |
-
class ProblematicItem(BaseModel):
|
| 12 |
-
text: str
|
| 13 |
-
|
| 14 |
-
class ProblematicList(BaseModel):
|
| 15 |
-
problematics: List[str]
|
| 16 |
-
|
| 17 |
-
class PredictionResponse(BaseModel):
|
| 18 |
-
predicted_class: str
|
| 19 |
-
score: float
|
| 20 |
-
|
| 21 |
-
class PredictionsResponse(BaseModel):
|
| 22 |
-
results: List[Dict[str, Union[str, float]]]
|
| 23 |
-
|
| 24 |
-
# Model environment variables
|
| 25 |
-
MODEL_NAME = os.getenv("MODEL_NAME", "votre-compte/votre-modele")
|
| 26 |
-
LABEL_0 = os.getenv("LABEL_0", "Classe A")
|
| 27 |
-
LABEL_1 = os.getenv("LABEL_1", "Classe B")
|
| 28 |
-
|
| 29 |
-
# Loading the model and tokenizer
|
| 30 |
-
tokenizer = None
|
| 31 |
-
model = None
|
| 32 |
-
|
| 33 |
-
def load_model():
|
| 34 |
-
global tokenizer, model
|
| 35 |
-
try:
|
| 36 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 37 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 38 |
-
return True
|
| 39 |
-
except Exception as e:
|
| 40 |
-
print(f"Error loading model: {e}")
|
| 41 |
-
return False
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def health_check():
|
| 45 |
-
global model, tokenizer
|
| 46 |
-
if model is None or tokenizer is None:
|
| 47 |
-
success = load_model()
|
| 48 |
-
if not success:
|
| 49 |
-
raise HTTPException(status_code=503, detail="Model not available")
|
| 50 |
-
return {"status": "ok", "model": MODEL_NAME}
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def predict_single(item: ProblematicItem):
|
| 54 |
-
global model, tokenizer
|
| 55 |
-
|
| 56 |
-
if model is None or tokenizer is None:
|
| 57 |
-
success = load_model()
|
| 58 |
-
if not success:
|
| 59 |
-
print('Error loading the model.')
|
| 60 |
-
|
| 61 |
-
try:
|
| 62 |
-
# Tokenization
|
| 63 |
-
inputs = tokenizer(item.text, padding=True, truncation=True, return_tensors="pt")
|
| 64 |
-
|
| 65 |
-
# Prediction
|
| 66 |
-
with torch.no_grad():
|
| 67 |
-
outputs = model(**inputs)
|
| 68 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 69 |
-
predicted_class = torch.argmax(probabilities, dim=1).item()
|
| 70 |
-
confidence_score = probabilities[0][predicted_class].item()
|
| 71 |
-
|
| 72 |
-
# Associate the correct label
|
| 73 |
-
predicted_label = LABEL_0 if predicted_class == 0 else LABEL_1
|
| 74 |
-
|
| 75 |
-
return PredictionResponse(predicted_class=predicted_label, score=confidence_score)
|
| 76 |
-
|
| 77 |
-
except Exception as e:
|
| 78 |
-
print(f"Error during prediction: {str(e)}")
|
| 79 |
-
|
| 80 |
-
def predict_batch(items: ProblematicList):
|
| 81 |
-
global model, tokenizer
|
| 82 |
-
|
| 83 |
-
if model is None or tokenizer is None:
|
| 84 |
-
success = load_model()
|
| 85 |
-
if not success:
|
| 86 |
-
print("Model not available")
|
| 87 |
-
|
| 88 |
-
try:
|
| 89 |
-
results = []
|
| 90 |
-
|
| 91 |
-
# Batch processing
|
| 92 |
-
batch_size = 8
|
| 93 |
-
for i in range(0, len(items.problematics), batch_size):
|
| 94 |
-
batch_texts = items.problematics[i:i+batch_size]
|
| 95 |
-
|
| 96 |
-
# Tokenization
|
| 97 |
-
inputs = tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt")
|
| 98 |
-
|
| 99 |
-
# Prediction
|
| 100 |
-
with torch.no_grad():
|
| 101 |
-
outputs = model(**inputs)
|
| 102 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 103 |
-
predicted_classes = torch.argmax(probabilities, dim=1).tolist()
|
| 104 |
-
confidence_scores = [probabilities[j][predicted_classes[j]].item() for j in range(len(predicted_classes))]
|
| 105 |
-
|
| 106 |
-
# Converting numerical predictions into labels
|
| 107 |
-
for j, (pred_class, score) in enumerate(zip(predicted_classes, confidence_scores)):
|
| 108 |
-
predicted_label = LABEL_0 if pred_class == 0 else LABEL_1
|
| 109 |
-
results.append({
|
| 110 |
-
"text": batch_texts[j],
|
| 111 |
-
"class": predicted_label,
|
| 112 |
-
"score": score
|
| 113 |
-
})
|
| 114 |
-
|
| 115 |
-
return PredictionsResponse(results=results)
|
| 116 |
-
|
| 117 |
-
except Exception as e:
|
| 118 |
-
print(f"Error during prediction: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|