File size: 9,996 Bytes
8c7bb55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6935b
8c7bb55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02e848
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import langchain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
from zipfile import ZipFile
import gradio as gr
import openpyxl
import os
import shutil
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken
import secrets

tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")

# create the length function
def tiktoken_len(text):
    tokens = tokenizer.encode(
        text,
        disallowed_special=()
    )
    return len(tokens)

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=400,
    chunk_overlap=40,
    length_function=tiktoken_len,
    separators=["\n\n", "\n", " ", ""]
)

embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})

def reset_database(ui_session_id):
  session_id = f"PDFAISS-{ui_session_id}"
  if 'drive' in session_id:
    print("RESET DATABASE: session_id contains 'drive' !!")
    return None

  try:
    shutil.rmtree(session_id)
  except:
    print(f'no {session_id} directory present')
  
  try:
    os.remove(f"{session_id}.zip")
  except:
    print("no {session_id}.zip present")

  return None

def is_duplicate(split_docs,db):
  epsilon=0.0
  print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
  for i in range(min(3,len(split_docs))):
    query = split_docs[i].page_content
    docs = db.similarity_search_with_score(query,k=1)
    _ , score = docs[0]
    epsilon += score
  print(f"DUPLICATE: epsilon: {epsilon}")
  return epsilon < 0.05

def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
  progress(progress_step,desc="merging docs")
  if len(split_docs)==0:
    print("MERGE to db: NO docs!!")
    return

  filename = split_docs[0].metadata['source']
  if is_duplicate(split_docs,db):
    print(f"MERGE: Document is duplicated: {filename}")
    return
  print(f"MERGE: number of split docs: {len(split_docs)}")
  batch = 20
  for i in range(0, len(split_docs), batch):
    progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
    db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
    db.merge_from(db1)
  return db

def merge_pdf_to_db(filename,db,progress,progress_step=0.1):
  progress_step+=0.05
  progress(progress_step,'unpacking pdf')
  doc = UnstructuredPDFLoader(filename).load()
  doc[0].metadata['source'] = filename.split('/')[-1]
  split_docs = text_splitter.split_documents(doc)
  progress_step+=0.3
  progress(progress_step,'docx unpacked')
  return merge_split_docs_to_db(split_docs,db,progress,progress_step)

def merge_docx_to_db(filename,db,progress,progress_step=0.1):
  progress_step+=0.05
  progress(progress_step,'unpacking docx')
  doc = UnstructuredWordDocumentLoader(filename).load()
  doc[0].metadata['source'] = filename.split('/')[-1]
  split_docs = text_splitter.split_documents(doc)
  progress_step+=0.3
  progress(progress_step,'docx unpacked')
  return merge_split_docs_to_db(split_docs,db,progress,progress_step)

def merge_txt_to_db(filename,db,progress,progress_step=0.1):
  progress_step+=0.05
  progress(progress_step,'unpacking txt')
  with open(filename) as f:
      docs = text_splitter.split_text(f.read())
      split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
  progress_step+=0.3
  progress(progress_step,'txt unpacked')
  return merge_split_docs_to_db(split_docs,db,progress,progress_step)

def unpack_zip_file(filename,db,progress):
    with ZipFile(filename, 'r') as zipObj:
        contents = zipObj.namelist()
        print(f"unpack zip: contents: {contents}")
        tmp_directory = filename.split('/')[-1].split('.')[-2]
        shutil.unpack_archive(filename, tmp_directory)

        if 'index.faiss' in [item.lower() for item in contents]:
            db2 = FAISS.load_local(tmp_directory, embeddings)
            db.merge_from(db2)
            return db
        
        for file in contents:
            if file.lower().endswith('.docx'):
              db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
            if file.lower().endswith('.pdf'):
              db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
            if file.lower().endswith('.txt'):
              db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
        return db

def add_files_to_zip(session_id):
    zip_file_name = f"{session_id}.zip"
    with ZipFile(zip_file_name, "w") as zipObj:
        for root, dirs, files in os.walk(session_id):
            for file_name in files:
                file_path = os.path.join(root, file_name)
                arcname = os.path.relpath(file_path, session_id)
                zipObj.write(file_path, arcname)

#### UI Functions ####

def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
    progress(progress_step,desc="Starting...")
    split_docs=[]
    if len(ui_session_id)==0:
      ui_session_id = secrets.token_urlsafe(16)
    session_id = f"PDFAISS-{ui_session_id}"

    try:
      db = FAISS.load_local(session_id,embeddings)
    except:
      print(f"SESSION: {session_id} database does not exist, create a FAISS db")
      db =  FAISS.from_documents([foo], embeddings)
      db.save_local(session_id)
      print(f"SESSION: {session_id} database created")
    
    print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
    for file_id,file in enumerate(files):
        file_type = file.name.split('.')[-1].lower()
        source = file.name.split('/')[-1]
        print(f"current file: {source}")
        progress(file_id/len(files),desc=f"Treating {source}")

        if file_type == 'pdf':
            db = merge_pdf_to_db(file.name,db,progress)
            db.save_local(session_id)
        
        if file_type == 'txt':
            db = merge_txt_to_db(file.name,db,progress)
            db.save_local(session_id)
        
        if file_type == 'docx':
            db = merge_docx_to_db(file.name,db,progress)
            db.save_local(session_id)

        if file_type == 'zip':
            db = unpack_zip_file(file.name,db,progress)
            db.save_local(session_id)
    
        ### move file to store ###
        progress(progress_step, desc = 'moving file to store')
        directory_path = f"{session_id}/store/"
        if not os.path.exists(directory_path):
            os.makedirs(directory_path)
        shutil.move(file.name, directory_path)

    ### load the updated db and zip it ###
    progress(progress_step, desc = 'loading db')
    db = FAISS.load_local(session_id,embeddings)
    print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
    progress(progress_step, desc = 'zipping db for download')
    add_files_to_zip(session_id)
    print(f"EMBEDDED: db zipped")
    progress(progress_step, desc = 'db zipped')
    return f"{session_id}.zip",ui_session_id

def display_docs(docs):
  output_str = ''
  for i, doc in enumerate(docs):
      source = doc.metadata['source'].split('/')[-1]
      output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n\n"
  return output_str

def ask_gpt(query, apikey,history,ui_session_id):
    session_id = f"PDFAISS-{ui_session_id}"
    try:
      db = FAISS.load_local(session_id,embeddings)
      print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
    except:
      print(f"SESSION: {session_id} database does not exist")
      return f"SESSION: {session_id} database does not exist","",""

    docs = db.similarity_search(query)
    history += f"[query]\n{query}\n[answer]\n"
    if(apikey==""):
        history += f"None\n[references]\n{display_docs(docs)}\n\n"
        return "No answer from GPT", display_docs(docs),history
    else:
        llm = ChatOpenAI(temperature=0, model_name = 'gpt-3.5-turbo', openai_api_key=apikey)
        chain = load_qa_chain(llm, chain_type="stuff")
        answer = chain.run(input_documents=docs, question=query, verbose=True)
        history += f"{answer}\n[references]\n{display_docs(docs)}\n\n"
        return answer,display_docs(docs),history

with gr.Blocks() as demo:
    gr.Markdown("Upload your documents and question them.")
    with gr.Tab("Upload PDF & TXT"): 
        tb_session_id = gr.Textbox(label='session id')
        docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"])
        db_output = gr.outputs.File(label="Download zipped database")
        btn_generate_db = gr.Button("Generate database")
        btn_reset_db = gr.Button("Reset database")

    with gr.Tab("Ask PDF"):
        with gr.Column():
            api_key = gr.Textbox(placeholder="Leave blank if you don't have any", label="OpenAI API Key",type='password')
            query_input = gr.Textbox(placeholder="Type your question", label="Question")
            btn_askGPT = gr.Button("Answer")
            answer_output = gr.Textbox(label='GPT 3.5 answer')
            answer_output.style(show_copy_button=True)
            sources = gr.Textbox(label='Sources')
            sources.style(show_copy_button=True)
            history = gr.Textbox(label='History')
            history.style(show_copy_button=True)

    btn_generate_db.click(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id])
    btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
    btn_askGPT.click(ask_gpt, inputs=[query_input,api_key,history,tb_session_id], outputs=[answer_output,sources,history])

demo.queue(concurrency_count=10)
demo.launch(debug=False,share=False)