Spaces:
Sleeping
Sleeping
File size: 9,996 Bytes
8c7bb55 5c6935b 8c7bb55 e02e848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import langchain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
from zipfile import ZipFile
import gradio as gr
import openpyxl
import os
import shutil
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken
import secrets
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
# create the length function
def tiktoken_len(text):
tokens = tokenizer.encode(
text,
disallowed_special=()
)
return len(tokens)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=40,
length_function=tiktoken_len,
separators=["\n\n", "\n", " ", ""]
)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})
def reset_database(ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
if 'drive' in session_id:
print("RESET DATABASE: session_id contains 'drive' !!")
return None
try:
shutil.rmtree(session_id)
except:
print(f'no {session_id} directory present')
try:
os.remove(f"{session_id}.zip")
except:
print("no {session_id}.zip present")
return None
def is_duplicate(split_docs,db):
epsilon=0.0
print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
for i in range(min(3,len(split_docs))):
query = split_docs[i].page_content
docs = db.similarity_search_with_score(query,k=1)
_ , score = docs[0]
epsilon += score
print(f"DUPLICATE: epsilon: {epsilon}")
return epsilon < 0.05
def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
progress(progress_step,desc="merging docs")
if len(split_docs)==0:
print("MERGE to db: NO docs!!")
return
filename = split_docs[0].metadata['source']
if is_duplicate(split_docs,db):
print(f"MERGE: Document is duplicated: {filename}")
return
print(f"MERGE: number of split docs: {len(split_docs)}")
batch = 20
for i in range(0, len(split_docs), batch):
progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
db.merge_from(db1)
return db
def merge_pdf_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking pdf')
doc = UnstructuredPDFLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def merge_docx_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking docx')
doc = UnstructuredWordDocumentLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def merge_txt_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking txt')
with open(filename) as f:
docs = text_splitter.split_text(f.read())
split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
progress_step+=0.3
progress(progress_step,'txt unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def unpack_zip_file(filename,db,progress):
with ZipFile(filename, 'r') as zipObj:
contents = zipObj.namelist()
print(f"unpack zip: contents: {contents}")
tmp_directory = filename.split('/')[-1].split('.')[-2]
shutil.unpack_archive(filename, tmp_directory)
if 'index.faiss' in [item.lower() for item in contents]:
db2 = FAISS.load_local(tmp_directory, embeddings)
db.merge_from(db2)
return db
for file in contents:
if file.lower().endswith('.docx'):
db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.pdf'):
db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.txt'):
db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
return db
def add_files_to_zip(session_id):
zip_file_name = f"{session_id}.zip"
with ZipFile(zip_file_name, "w") as zipObj:
for root, dirs, files in os.walk(session_id):
for file_name in files:
file_path = os.path.join(root, file_name)
arcname = os.path.relpath(file_path, session_id)
zipObj.write(file_path, arcname)
#### UI Functions ####
def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
progress(progress_step,desc="Starting...")
split_docs=[]
if len(ui_session_id)==0:
ui_session_id = secrets.token_urlsafe(16)
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings)
except:
print(f"SESSION: {session_id} database does not exist, create a FAISS db")
db = FAISS.from_documents([foo], embeddings)
db.save_local(session_id)
print(f"SESSION: {session_id} database created")
print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
for file_id,file in enumerate(files):
file_type = file.name.split('.')[-1].lower()
source = file.name.split('/')[-1]
print(f"current file: {source}")
progress(file_id/len(files),desc=f"Treating {source}")
if file_type == 'pdf':
db = merge_pdf_to_db(file.name,db,progress)
db.save_local(session_id)
if file_type == 'txt':
db = merge_txt_to_db(file.name,db,progress)
db.save_local(session_id)
if file_type == 'docx':
db = merge_docx_to_db(file.name,db,progress)
db.save_local(session_id)
if file_type == 'zip':
db = unpack_zip_file(file.name,db,progress)
db.save_local(session_id)
### move file to store ###
progress(progress_step, desc = 'moving file to store')
directory_path = f"{session_id}/store/"
if not os.path.exists(directory_path):
os.makedirs(directory_path)
shutil.move(file.name, directory_path)
### load the updated db and zip it ###
progress(progress_step, desc = 'loading db')
db = FAISS.load_local(session_id,embeddings)
print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
progress(progress_step, desc = 'zipping db for download')
add_files_to_zip(session_id)
print(f"EMBEDDED: db zipped")
progress(progress_step, desc = 'db zipped')
return f"{session_id}.zip",ui_session_id
def display_docs(docs):
output_str = ''
for i, doc in enumerate(docs):
source = doc.metadata['source'].split('/')[-1]
output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n\n"
return output_str
def ask_gpt(query, apikey,history,ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings)
print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
except:
print(f"SESSION: {session_id} database does not exist")
return f"SESSION: {session_id} database does not exist","",""
docs = db.similarity_search(query)
history += f"[query]\n{query}\n[answer]\n"
if(apikey==""):
history += f"None\n[references]\n{display_docs(docs)}\n\n"
return "No answer from GPT", display_docs(docs),history
else:
llm = ChatOpenAI(temperature=0, model_name = 'gpt-3.5-turbo', openai_api_key=apikey)
chain = load_qa_chain(llm, chain_type="stuff")
answer = chain.run(input_documents=docs, question=query, verbose=True)
history += f"{answer}\n[references]\n{display_docs(docs)}\n\n"
return answer,display_docs(docs),history
with gr.Blocks() as demo:
gr.Markdown("Upload your documents and question them.")
with gr.Tab("Upload PDF & TXT"):
tb_session_id = gr.Textbox(label='session id')
docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"])
db_output = gr.outputs.File(label="Download zipped database")
btn_generate_db = gr.Button("Generate database")
btn_reset_db = gr.Button("Reset database")
with gr.Tab("Ask PDF"):
with gr.Column():
api_key = gr.Textbox(placeholder="Leave blank if you don't have any", label="OpenAI API Key",type='password')
query_input = gr.Textbox(placeholder="Type your question", label="Question")
btn_askGPT = gr.Button("Answer")
answer_output = gr.Textbox(label='GPT 3.5 answer')
answer_output.style(show_copy_button=True)
sources = gr.Textbox(label='Sources')
sources.style(show_copy_button=True)
history = gr.Textbox(label='History')
history.style(show_copy_button=True)
btn_generate_db.click(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id])
btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
btn_askGPT.click(ask_gpt, inputs=[query_input,api_key,history,tb_session_id], outputs=[answer_output,sources,history])
demo.queue(concurrency_count=10)
demo.launch(debug=False,share=False) |