Lucas ARRIESSE
commited on
Commit
·
5ef0f8d
1
Parent(s):
035141c
Migrate API modules to api routers
Browse files- api/docs.py +438 -0
- api/requirements.py +35 -0
- app.py +12 -482
- dependencies.py +42 -0
- static/js/script.js +5 -5
api/docs.py
CHANGED
@@ -1,4 +1,442 @@
|
|
|
|
|
|
1 |
from fastapi.routing import APIRouter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# API router for requirement extraction from docs / doc list retrieval / download
|
4 |
router = APIRouter()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from typing import Literal
|
3 |
from fastapi.routing import APIRouter
|
4 |
+
import logging
|
5 |
+
import string
|
6 |
+
import io
|
7 |
+
import traceback
|
8 |
+
import zipfile
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
from pydantic import BaseModel
|
12 |
+
import requests
|
13 |
+
import subprocess
|
14 |
+
import pandas as pd
|
15 |
+
import re
|
16 |
+
from lxml import etree
|
17 |
+
from nltk.tokenize import word_tokenize
|
18 |
+
from bs4 import BeautifulSoup
|
19 |
+
from nltk.corpus import stopwords
|
20 |
+
from nltk.stem import WordNetLemmatizer
|
21 |
+
from fastapi import Depends, BackgroundTasks, HTTPException, Request
|
22 |
+
from dependencies import get_llm_router
|
23 |
+
from fastapi.responses import StreamingResponse
|
24 |
+
from litellm.router import Router
|
25 |
+
|
26 |
+
from schemas import DataRequest, DataResponse, DocRequirements, DownloadRequest, MeetingsRequest, MeetingsResponse, RequirementsRequest, RequirementsResponse
|
27 |
|
28 |
# API router for requirement extraction from docs / doc list retrieval / download
|
29 |
router = APIRouter()
|
30 |
+
|
31 |
+
# ==================================================== Utilities =================================================================
|
32 |
+
|
33 |
+
lemmatizer = WordNetLemmatizer()
|
34 |
+
|
35 |
+
NSMAP = {
|
36 |
+
'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main',
|
37 |
+
'v': 'urn:schemas-microsoft-com:vml'
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
def lemma(text: str):
|
42 |
+
stop_words = set(stopwords.words('english'))
|
43 |
+
txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
|
44 |
+
tokens = [token for token in word_tokenize(
|
45 |
+
txt.lower()) if token not in stop_words]
|
46 |
+
return [lemmatizer.lemmatize(token) for token in tokens]
|
47 |
+
|
48 |
+
|
49 |
+
def get_docx_archive(url: str) -> zipfile.ZipFile:
|
50 |
+
"""Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
|
51 |
+
if not url.endswith("zip"):
|
52 |
+
raise ValueError("URL doit pointer vers un fichier ZIP")
|
53 |
+
doc_id = os.path.splitext(os.path.basename(url))[0]
|
54 |
+
resp = requests.get(url, verify=False, headers={
|
55 |
+
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
56 |
+
})
|
57 |
+
resp.raise_for_status()
|
58 |
+
|
59 |
+
with zipfile.ZipFile(io.BytesIO(resp.content)) as zf:
|
60 |
+
for file_name in zf.namelist():
|
61 |
+
if file_name.endswith(".docx"):
|
62 |
+
docx_bytes = zf.read(file_name)
|
63 |
+
return zipfile.ZipFile(io.BytesIO(docx_bytes))
|
64 |
+
elif file_name.endswith(".doc"):
|
65 |
+
input_path = f"/tmp/{doc_id}.doc"
|
66 |
+
output_path = f"/tmp/{doc_id}.docx"
|
67 |
+
docx_bytes = zf.read(file_name)
|
68 |
+
|
69 |
+
with open(input_path, "wb") as f:
|
70 |
+
f.write(docx_bytes)
|
71 |
+
|
72 |
+
subprocess.run([
|
73 |
+
"libreoffice",
|
74 |
+
"--headless",
|
75 |
+
"--convert-to", "docx",
|
76 |
+
"--outdir", "/tmp",
|
77 |
+
input_path
|
78 |
+
], check=True)
|
79 |
+
|
80 |
+
with open(output_path, "rb") as f:
|
81 |
+
docx_bytes = f.read()
|
82 |
+
|
83 |
+
os.remove(input_path)
|
84 |
+
os.remove(output_path)
|
85 |
+
|
86 |
+
return zipfile.ZipFile(io.BytesIO(docx_bytes))
|
87 |
+
|
88 |
+
raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")
|
89 |
+
|
90 |
+
|
91 |
+
def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
|
92 |
+
"""Parse le document.xml principal"""
|
93 |
+
xml_bytes = docx_zip.read('word/document.xml')
|
94 |
+
parser = etree.XMLParser(remove_blank_text=True)
|
95 |
+
return etree.fromstring(xml_bytes, parser=parser)
|
96 |
+
|
97 |
+
|
98 |
+
def clean_document_xml(root: etree._Element) -> None:
|
99 |
+
"""Nettoie le XML en modifiant l'arbre directement"""
|
100 |
+
# Suppression des balises <w:del> et leur contenu
|
101 |
+
for del_elem in root.xpath('//w:del', namespaces=NSMAP):
|
102 |
+
parent = del_elem.getparent()
|
103 |
+
if parent is not None:
|
104 |
+
parent.remove(del_elem)
|
105 |
+
|
106 |
+
# Désencapsulation des balises <w:ins>
|
107 |
+
for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
|
108 |
+
parent = ins_elem.getparent()
|
109 |
+
index = parent.index(ins_elem)
|
110 |
+
for child in ins_elem.iterchildren():
|
111 |
+
parent.insert(index, child)
|
112 |
+
index += 1
|
113 |
+
parent.remove(ins_elem)
|
114 |
+
|
115 |
+
# Nettoyage des commentaires
|
116 |
+
for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
|
117 |
+
for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
|
118 |
+
parent = elem.getparent()
|
119 |
+
if parent is not None:
|
120 |
+
parent.remove(elem)
|
121 |
+
|
122 |
+
|
123 |
+
def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
|
124 |
+
"""Crée un nouveau docx avec le XML modifié"""
|
125 |
+
output = io.BytesIO()
|
126 |
+
|
127 |
+
with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
|
128 |
+
# Copier tous les fichiers non modifiés
|
129 |
+
for file in original_zip.infolist():
|
130 |
+
if file.filename != 'word/document.xml':
|
131 |
+
new_zip.writestr(file, original_zip.read(file.filename))
|
132 |
+
|
133 |
+
# Ajouter le document.xml modifié
|
134 |
+
xml_str = etree.tostring(
|
135 |
+
modified_root,
|
136 |
+
xml_declaration=True,
|
137 |
+
encoding='UTF-8',
|
138 |
+
pretty_print=True
|
139 |
+
)
|
140 |
+
new_zip.writestr('word/document.xml', xml_str)
|
141 |
+
|
142 |
+
output.seek(0)
|
143 |
+
return output.getvalue()
|
144 |
+
|
145 |
+
|
146 |
+
def docx_to_txt(doc_id: str, url: str):
|
147 |
+
docx_zip = get_docx_archive(url)
|
148 |
+
root = parse_document_xml(docx_zip)
|
149 |
+
clean_document_xml(root)
|
150 |
+
modified_bytes = create_modified_docx(docx_zip, root)
|
151 |
+
|
152 |
+
input_path = f"/tmp/{doc_id}_cleaned.docx"
|
153 |
+
output_path = f"/tmp/{doc_id}_cleaned.txt"
|
154 |
+
with open(input_path, "wb") as f:
|
155 |
+
f.write(modified_bytes)
|
156 |
+
|
157 |
+
subprocess.run([
|
158 |
+
"libreoffice",
|
159 |
+
"--headless",
|
160 |
+
"--convert-to", "txt",
|
161 |
+
"--outdir", "/tmp",
|
162 |
+
input_path
|
163 |
+
], check=True)
|
164 |
+
|
165 |
+
with open(output_path, "r", encoding="utf-8") as f:
|
166 |
+
txt_data = [line.strip() for line in f if line.strip()]
|
167 |
+
|
168 |
+
os.remove(input_path)
|
169 |
+
os.remove(output_path)
|
170 |
+
return txt_data
|
171 |
+
|
172 |
+
|
173 |
+
# ============================================= Doc routes =========================================================
|
174 |
+
|
175 |
+
@router.post("/get_meetings", response_model=MeetingsResponse)
|
176 |
+
def get_meetings(req: MeetingsRequest):
|
177 |
+
working_group = req.working_group
|
178 |
+
tsg = re.sub(r"\d+", "", working_group)
|
179 |
+
wg_number = re.search(r"\d", working_group).group(0)
|
180 |
+
|
181 |
+
logging.debug(tsg, wg_number)
|
182 |
+
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
183 |
+
logging.debug(url)
|
184 |
+
|
185 |
+
resp = requests.get(url, verify=False)
|
186 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
187 |
+
|
188 |
+
meeting_folders = []
|
189 |
+
all_meetings = []
|
190 |
+
wg_folders = [item.get_text() for item in soup.select("tr td a")]
|
191 |
+
selected_folder = None
|
192 |
+
for folder in wg_folders:
|
193 |
+
if "wg" + str(wg_number) in folder.lower():
|
194 |
+
selected_folder = folder
|
195 |
+
break
|
196 |
+
|
197 |
+
url += "/" + selected_folder
|
198 |
+
logging.debug(url)
|
199 |
+
|
200 |
+
if selected_folder:
|
201 |
+
resp = requests.get(url, verify=False)
|
202 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
203 |
+
meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
|
204 |
+
).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())]
|
205 |
+
all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace(
|
206 |
+
"-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders]
|
207 |
+
|
208 |
+
return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))
|
209 |
+
|
210 |
+
# ============================================================================================================================================
|
211 |
+
|
212 |
+
|
213 |
+
@router.post("/get_dataframe", response_model=DataResponse)
|
214 |
+
def get_change_request_dataframe(req: DataRequest):
|
215 |
+
working_group = req.working_group
|
216 |
+
tsg = re.sub(r"\d+", "", working_group)
|
217 |
+
wg_number = re.search(r"\d", working_group).group(0)
|
218 |
+
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
219 |
+
logging.info("Fetching TDocs dataframe")
|
220 |
+
|
221 |
+
resp = requests.get(url, verify=False)
|
222 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
223 |
+
wg_folders = [item.get_text() for item in soup.select("tr td a")]
|
224 |
+
selected_folder = None
|
225 |
+
for folder in wg_folders:
|
226 |
+
if "wg" + str(wg_number) in folder.lower():
|
227 |
+
selected_folder = folder
|
228 |
+
break
|
229 |
+
|
230 |
+
url += "/" + selected_folder + "/" + req.meeting + "/docs"
|
231 |
+
resp = requests.get(url, verify=False)
|
232 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
233 |
+
files = [item.get_text() for item in soup.select("tr td a")
|
234 |
+
if item.get_text().endswith(".xlsx")]
|
235 |
+
|
236 |
+
if files == []:
|
237 |
+
raise HTTPException(status_code=404, detail="No XLSX has been found")
|
238 |
+
|
239 |
+
def gen_url(tdoc: str):
|
240 |
+
return f"{url}/{tdoc}.zip"
|
241 |
+
|
242 |
+
df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
|
243 |
+
filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(
|
244 |
+
df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
|
245 |
+
filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)
|
246 |
+
|
247 |
+
df = filtered_df.fillna("")
|
248 |
+
return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))
|
249 |
+
|
250 |
+
# ==================================================================================================================================
|
251 |
+
|
252 |
+
|
253 |
+
@router.post("/download_tdocs")
|
254 |
+
def download_tdocs(req: DownloadRequest):
|
255 |
+
"""Download the specified TDocs and zips them in a single archive"""
|
256 |
+
documents = req.documents
|
257 |
+
|
258 |
+
logging.info(f"Downloading TDocs: {documents}")
|
259 |
+
|
260 |
+
def process_document(doc: str):
|
261 |
+
doc_id = doc
|
262 |
+
url = requests.post(
|
263 |
+
'https://organizedprogrammers-3gppdocfinder.hf.space/find',
|
264 |
+
headers={"Content-Type": "application/json"},
|
265 |
+
data=json.dumps({"doc_id": doc_id}),
|
266 |
+
verify=False
|
267 |
+
)
|
268 |
+
logging.info(
|
269 |
+
f"Retrieving URL for doc {doc_id} returned http status {url.status_code}")
|
270 |
+
url = url.json()['url']
|
271 |
+
logging.debug(f"Doc URL for {doc_id} is {url}")
|
272 |
+
|
273 |
+
try:
|
274 |
+
txt = "\n".join(docx_to_txt(doc_id, url))
|
275 |
+
except Exception as e:
|
276 |
+
txt = f"Document {doc_id} text extraction failed: {e}"
|
277 |
+
return doc_id, txt.encode("utf-8")
|
278 |
+
|
279 |
+
# PERF: use asyncio?
|
280 |
+
def process_batch(batch):
|
281 |
+
results = {}
|
282 |
+
for doc in batch:
|
283 |
+
try:
|
284 |
+
doc_id, file_bytes = process_document(doc)
|
285 |
+
results[doc_id] = file_bytes
|
286 |
+
except Exception as e:
|
287 |
+
traceback.print_exception(e)
|
288 |
+
results[doc] = b"Erreur"
|
289 |
+
return results
|
290 |
+
|
291 |
+
documents_bytes = process_batch(documents)
|
292 |
+
|
293 |
+
zip_buffer = io.BytesIO()
|
294 |
+
with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file:
|
295 |
+
for doc_id, txt_data in documents_bytes.items():
|
296 |
+
zip_file.writestr(f'{doc_id}.txt', txt_data)
|
297 |
+
|
298 |
+
zip_buffer.seek(0)
|
299 |
+
return StreamingResponse(
|
300 |
+
zip_buffer,
|
301 |
+
media_type="application/zip"
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
@router.post("/generate_requirements", response_model=RequirementsResponse)
|
306 |
+
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks, llm_router: Router = Depends(get_llm_router)):
|
307 |
+
"""Extract requirements from the specified TDocs using a LLM"""
|
308 |
+
|
309 |
+
documents = req.documents
|
310 |
+
n_docs = len(documents)
|
311 |
+
|
312 |
+
logging.info("Generating requirements for documents: {}".format(
|
313 |
+
[doc.document for doc in documents]))
|
314 |
+
|
315 |
+
def prompt(doc_id, full):
|
316 |
+
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
|
317 |
+
|
318 |
+
async def process_document(doc):
|
319 |
+
doc_id = doc.document
|
320 |
+
url = doc.url
|
321 |
+
try:
|
322 |
+
full = "\n".join(docx_to_txt(doc_id, url))
|
323 |
+
except Exception as e:
|
324 |
+
logging.error(f"Failed to process doc {doc_id}", e)
|
325 |
+
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
326 |
+
|
327 |
+
try:
|
328 |
+
resp_ai = await llm_router.acompletion(
|
329 |
+
model="gemini-v2",
|
330 |
+
messages=[
|
331 |
+
{"role": "user", "content": prompt(doc_id, full)}],
|
332 |
+
response_format=RequirementsResponse
|
333 |
+
)
|
334 |
+
|
335 |
+
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
336 |
+
|
337 |
+
except Exception as e:
|
338 |
+
logging.error(
|
339 |
+
f"Failed to process document {doc_id}", e, stack_info=True)
|
340 |
+
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
341 |
+
|
342 |
+
async def process_batch(batch):
|
343 |
+
results = await asyncio.gather(*(process_document(doc) for doc in batch))
|
344 |
+
return [item for sublist in results for item in sublist]
|
345 |
+
|
346 |
+
all_requirements = []
|
347 |
+
|
348 |
+
if n_docs <= 30:
|
349 |
+
batch_results = await process_batch(documents)
|
350 |
+
all_requirements.extend(batch_results)
|
351 |
+
else:
|
352 |
+
batch_size = 30
|
353 |
+
batches = [documents[i:i + batch_size]
|
354 |
+
for i in range(0, n_docs, batch_size)]
|
355 |
+
|
356 |
+
for i, batch in enumerate(batches):
|
357 |
+
batch_results = await process_batch(batch)
|
358 |
+
all_requirements.extend(batch_results)
|
359 |
+
|
360 |
+
if i < len(batches) - 1:
|
361 |
+
background_tasks.add_task(asyncio.sleep, 60)
|
362 |
+
return RequirementsResponse(requirements=all_requirements)
|
363 |
+
|
364 |
+
# ======================================================================================================================================================================================
|
365 |
+
|
366 |
+
|
367 |
+
class ProgressUpdate(BaseModel):
|
368 |
+
"""Defines the structure of a single SSE message."""
|
369 |
+
status: Literal["progress", "complete"]
|
370 |
+
data: dict
|
371 |
+
total_docs: int
|
372 |
+
processed_docs: int
|
373 |
+
|
374 |
+
|
375 |
+
@router.post("/generate_requirements/sse")
|
376 |
+
async def gen_reqs(req: RequirementsRequest, con: Request, llm_router: Router = Depends(get_llm_router)):
|
377 |
+
"""Extract requirements from the specified TDocs using a LLM and returns SSE events about the progress of ongoing operations"""
|
378 |
+
|
379 |
+
documents = req.documents
|
380 |
+
n_docs = len(documents)
|
381 |
+
|
382 |
+
logging.info("Generating requirements for documents: {}".format(
|
383 |
+
[doc.document for doc in documents]))
|
384 |
+
|
385 |
+
# limit max concurrency of LLM requests to prevent a huge pile of errors because of small rate limits
|
386 |
+
concurrency_sema = asyncio.Semaphore(4)
|
387 |
+
|
388 |
+
def prompt(doc_id, full):
|
389 |
+
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
|
390 |
+
|
391 |
+
async def _process_document(doc) -> list[DocRequirements]:
|
392 |
+
doc_id = doc.document
|
393 |
+
url = doc.url
|
394 |
+
|
395 |
+
# convert the docx to txt for use
|
396 |
+
try:
|
397 |
+
full = "\n".join(docx_to_txt(doc_id, url))
|
398 |
+
except Exception as e:
|
399 |
+
logging.error(
|
400 |
+
f"Failed to process document {doc_id}", e, stack_info=True)
|
401 |
+
return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]
|
402 |
+
|
403 |
+
try:
|
404 |
+
await concurrency_sema.acquire()
|
405 |
+
|
406 |
+
model_used = "gemini-v2"
|
407 |
+
resp_ai = await llm_router.acompletion(
|
408 |
+
model=model_used,
|
409 |
+
messages=[
|
410 |
+
{"role": "user", "content": prompt(doc_id, full)}],
|
411 |
+
response_format=RequirementsResponse
|
412 |
+
)
|
413 |
+
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
414 |
+
except Exception as e:
|
415 |
+
return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]
|
416 |
+
finally:
|
417 |
+
concurrency_sema.release()
|
418 |
+
|
419 |
+
# futures for all processed documents
|
420 |
+
process_futures = [_process_document(doc) for doc in documents]
|
421 |
+
|
422 |
+
# lambda to print progress
|
423 |
+
def progress_update(x): return f"data: {x.model_dump_json()}\n\n"
|
424 |
+
|
425 |
+
# async generator that generates the SSE events for progress
|
426 |
+
async def _stream_generator(docs: list[asyncio.Future]):
|
427 |
+
items = []
|
428 |
+
n_processed = 0
|
429 |
+
|
430 |
+
yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=0))
|
431 |
+
|
432 |
+
for doc in asyncio.as_completed(docs):
|
433 |
+
result = await doc
|
434 |
+
items.extend(result)
|
435 |
+
n_processed += 1
|
436 |
+
yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=n_processed))
|
437 |
+
|
438 |
+
final_response = RequirementsResponse(requirements=items)
|
439 |
+
|
440 |
+
yield progress_update(ProgressUpdate(status="complete", data=final_response.model_dump(), total_docs=n_docs, processed_docs=n_processed))
|
441 |
+
|
442 |
+
return StreamingResponse(_stream_generator(process_futures), media_type="text/event-stream")
|
api/requirements.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter, Depends, HTTPException
|
2 |
+
from litellm.router import Router
|
3 |
+
from dependencies import get_llm_router
|
4 |
+
from schemas import ReqSearchLLMResponse, ReqSearchRequest, ReqSearchResponse
|
5 |
+
|
6 |
+
# Router for all requirements
|
7 |
+
router = APIRouter()
|
8 |
+
|
9 |
+
|
10 |
+
@router.post("/get_reqs_from_query", response_model=ReqSearchResponse)
|
11 |
+
def find_requirements_from_problem_description(req: ReqSearchRequest, llm_router: Router = Depends(get_llm_router)):
|
12 |
+
"""Finds the requirements that adress a given problem description from an extracted list"""
|
13 |
+
|
14 |
+
requirements = req.requirements
|
15 |
+
query = req.query
|
16 |
+
|
17 |
+
requirements_text = "\n".join(
|
18 |
+
[f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements])
|
19 |
+
print("Called the LLM")
|
20 |
+
resp_ai = llm_router.completion(
|
21 |
+
model="gemini-v2",
|
22 |
+
messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}],
|
23 |
+
response_format=ReqSearchLLMResponse
|
24 |
+
)
|
25 |
+
print("Answered")
|
26 |
+
print(resp_ai.choices[0].message.content)
|
27 |
+
|
28 |
+
out_llm = ReqSearchLLMResponse.model_validate_json(
|
29 |
+
resp_ai.choices[0].message.content).selected
|
30 |
+
|
31 |
+
if max(out_llm) > len(requirements) - 1:
|
32 |
+
raise HTTPException(
|
33 |
+
status_code=500, detail="LLM error : Generated a wrong index, please try again.")
|
34 |
+
|
35 |
+
return ReqSearchResponse(requirements=[requirements[i] for i in out_llm])
|
app.py
CHANGED
@@ -1,31 +1,20 @@
|
|
1 |
import asyncio
|
2 |
import logging
|
|
|
|
|
3 |
import nltk
|
4 |
-
import string
|
5 |
import warnings
|
6 |
-
import io
|
7 |
-
import traceback
|
8 |
-
import zipfile
|
9 |
-
import json
|
10 |
import os
|
11 |
-
import
|
12 |
-
import subprocess
|
13 |
-
import pandas as pd
|
14 |
-
import re
|
15 |
-
from lxml import etree
|
16 |
-
from typing import Literal
|
17 |
-
from dotenv import load_dotenv
|
18 |
-
from nltk.tokenize import word_tokenize
|
19 |
-
from bs4 import BeautifulSoup
|
20 |
-
from nltk.corpus import stopwords
|
21 |
-
from nltk.stem import WordNetLemmatizer
|
22 |
-
from fastapi import FastAPI, BackgroundTasks, HTTPException, Request
|
23 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
|
|
24 |
from schemas import *
|
25 |
from fastapi.middleware.cors import CORSMiddleware
|
26 |
from fastapi.responses import FileResponse, StreamingResponse
|
27 |
from litellm.router import Router
|
28 |
-
from aiolimiter import AsyncLimiter
|
29 |
|
30 |
load_dotenv()
|
31 |
|
@@ -36,6 +25,9 @@ logging.basicConfig(
|
|
36 |
datefmt='%Y-%m-%d %H:%M:%S'
|
37 |
)
|
38 |
|
|
|
|
|
|
|
39 |
# Download required packages for NLTK
|
40 |
nltk.download('stopwords')
|
41 |
nltk.download('punkt_tab')
|
@@ -47,470 +39,8 @@ app = FastAPI(title="Requirements Extractor")
|
|
47 |
app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=[
|
48 |
"*"], allow_methods=["*"], allow_origins=["*"])
|
49 |
|
50 |
-
llm_router = Router(model_list=[
|
51 |
-
{
|
52 |
-
"model_name": "gemini-v1",
|
53 |
-
"litellm_params":
|
54 |
-
{
|
55 |
-
"model": "gemini/gemini-2.0-flash",
|
56 |
-
"api_key": os.environ.get("GEMINI"),
|
57 |
-
"max_retries": 5,
|
58 |
-
"rpm": 15,
|
59 |
-
"allowed_fails": 1,
|
60 |
-
"cooldown": 30,
|
61 |
-
}
|
62 |
-
},
|
63 |
-
{
|
64 |
-
"model_name": "gemini-v2",
|
65 |
-
"litellm_params":
|
66 |
-
{
|
67 |
-
"model": "gemini/gemini-2.5-flash",
|
68 |
-
"api_key": os.environ.get("GEMINI"),
|
69 |
-
"max_retries": 5,
|
70 |
-
"rpm": 10,
|
71 |
-
"allowed_fails": 1,
|
72 |
-
"cooldown": 30,
|
73 |
-
}
|
74 |
-
}], fallbacks=[{"gemini-v2": ["gemini-v1"]}], num_retries=10, retry_after=30)
|
75 |
-
|
76 |
-
lemmatizer = WordNetLemmatizer()
|
77 |
-
|
78 |
-
NSMAP = {
|
79 |
-
'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main',
|
80 |
-
'v': 'urn:schemas-microsoft-com:vml'
|
81 |
-
}
|
82 |
-
|
83 |
-
|
84 |
-
def lemma(text: str):
|
85 |
-
stop_words = set(stopwords.words('english'))
|
86 |
-
txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
|
87 |
-
tokens = [token for token in word_tokenize(
|
88 |
-
txt.lower()) if token not in stop_words]
|
89 |
-
return [lemmatizer.lemmatize(token) for token in tokens]
|
90 |
-
|
91 |
-
|
92 |
-
def get_docx_archive(url: str) -> zipfile.ZipFile:
|
93 |
-
"""Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
|
94 |
-
if not url.endswith("zip"):
|
95 |
-
raise ValueError("URL doit pointer vers un fichier ZIP")
|
96 |
-
doc_id = os.path.splitext(os.path.basename(url))[0]
|
97 |
-
resp = requests.get(url, verify=False, headers={
|
98 |
-
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
99 |
-
})
|
100 |
-
resp.raise_for_status()
|
101 |
-
|
102 |
-
with zipfile.ZipFile(io.BytesIO(resp.content)) as zf:
|
103 |
-
for file_name in zf.namelist():
|
104 |
-
if file_name.endswith(".docx"):
|
105 |
-
docx_bytes = zf.read(file_name)
|
106 |
-
return zipfile.ZipFile(io.BytesIO(docx_bytes))
|
107 |
-
elif file_name.endswith(".doc"):
|
108 |
-
input_path = f"/tmp/{doc_id}.doc"
|
109 |
-
output_path = f"/tmp/{doc_id}.docx"
|
110 |
-
docx_bytes = zf.read(file_name)
|
111 |
-
|
112 |
-
with open(input_path, "wb") as f:
|
113 |
-
f.write(docx_bytes)
|
114 |
-
|
115 |
-
subprocess.run([
|
116 |
-
"libreoffice",
|
117 |
-
"--headless",
|
118 |
-
"--convert-to", "docx",
|
119 |
-
"--outdir", "/tmp",
|
120 |
-
input_path
|
121 |
-
], check=True)
|
122 |
-
|
123 |
-
with open(output_path, "rb") as f:
|
124 |
-
docx_bytes = f.read()
|
125 |
-
|
126 |
-
os.remove(input_path)
|
127 |
-
os.remove(output_path)
|
128 |
-
|
129 |
-
return zipfile.ZipFile(io.BytesIO(docx_bytes))
|
130 |
-
|
131 |
-
raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")
|
132 |
-
|
133 |
-
|
134 |
-
def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
|
135 |
-
"""Parse le document.xml principal"""
|
136 |
-
xml_bytes = docx_zip.read('word/document.xml')
|
137 |
-
parser = etree.XMLParser(remove_blank_text=True)
|
138 |
-
return etree.fromstring(xml_bytes, parser=parser)
|
139 |
-
|
140 |
-
|
141 |
-
def clean_document_xml(root: etree._Element) -> None:
|
142 |
-
"""Nettoie le XML en modifiant l'arbre directement"""
|
143 |
-
# Suppression des balises <w:del> et leur contenu
|
144 |
-
for del_elem in root.xpath('//w:del', namespaces=NSMAP):
|
145 |
-
parent = del_elem.getparent()
|
146 |
-
if parent is not None:
|
147 |
-
parent.remove(del_elem)
|
148 |
-
|
149 |
-
# Désencapsulation des balises <w:ins>
|
150 |
-
for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
|
151 |
-
parent = ins_elem.getparent()
|
152 |
-
index = parent.index(ins_elem)
|
153 |
-
for child in ins_elem.iterchildren():
|
154 |
-
parent.insert(index, child)
|
155 |
-
index += 1
|
156 |
-
parent.remove(ins_elem)
|
157 |
-
|
158 |
-
# Nettoyage des commentaires
|
159 |
-
for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
|
160 |
-
for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
|
161 |
-
parent = elem.getparent()
|
162 |
-
if parent is not None:
|
163 |
-
parent.remove(elem)
|
164 |
-
|
165 |
-
|
166 |
-
def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
|
167 |
-
"""Crée un nouveau docx avec le XML modifié"""
|
168 |
-
output = io.BytesIO()
|
169 |
-
|
170 |
-
with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
|
171 |
-
# Copier tous les fichiers non modifiés
|
172 |
-
for file in original_zip.infolist():
|
173 |
-
if file.filename != 'word/document.xml':
|
174 |
-
new_zip.writestr(file, original_zip.read(file.filename))
|
175 |
-
|
176 |
-
# Ajouter le document.xml modifié
|
177 |
-
xml_str = etree.tostring(
|
178 |
-
modified_root,
|
179 |
-
xml_declaration=True,
|
180 |
-
encoding='UTF-8',
|
181 |
-
pretty_print=True
|
182 |
-
)
|
183 |
-
new_zip.writestr('word/document.xml', xml_str)
|
184 |
-
|
185 |
-
output.seek(0)
|
186 |
-
return output.getvalue()
|
187 |
-
|
188 |
-
|
189 |
-
def docx_to_txt(doc_id: str, url: str):
|
190 |
-
docx_zip = get_docx_archive(url)
|
191 |
-
root = parse_document_xml(docx_zip)
|
192 |
-
clean_document_xml(root)
|
193 |
-
modified_bytes = create_modified_docx(docx_zip, root)
|
194 |
-
|
195 |
-
input_path = f"/tmp/{doc_id}_cleaned.docx"
|
196 |
-
output_path = f"/tmp/{doc_id}_cleaned.txt"
|
197 |
-
with open(input_path, "wb") as f:
|
198 |
-
f.write(modified_bytes)
|
199 |
-
|
200 |
-
subprocess.run([
|
201 |
-
"libreoffice",
|
202 |
-
"--headless",
|
203 |
-
"--convert-to", "txt",
|
204 |
-
"--outdir", "/tmp",
|
205 |
-
input_path
|
206 |
-
], check=True)
|
207 |
-
|
208 |
-
with open(output_path, "r", encoding="utf-8") as f:
|
209 |
-
txt_data = [line.strip() for line in f if line.strip()]
|
210 |
-
|
211 |
-
os.remove(input_path)
|
212 |
-
os.remove(output_path)
|
213 |
-
return txt_data
|
214 |
-
|
215 |
-
|
216 |
-
# ============================================= Doc routes =========================================================
|
217 |
-
|
218 |
-
@app.post("/get_meetings", response_model=MeetingsResponse)
|
219 |
-
def get_meetings(req: MeetingsRequest):
|
220 |
-
working_group = req.working_group
|
221 |
-
tsg = re.sub(r"\d+", "", working_group)
|
222 |
-
wg_number = re.search(r"\d", working_group).group(0)
|
223 |
-
|
224 |
-
logging.debug(tsg, wg_number)
|
225 |
-
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
226 |
-
logging.debug(url)
|
227 |
-
|
228 |
-
resp = requests.get(url, verify=False)
|
229 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
230 |
-
|
231 |
-
meeting_folders = []
|
232 |
-
all_meetings = []
|
233 |
-
wg_folders = [item.get_text() for item in soup.select("tr td a")]
|
234 |
-
selected_folder = None
|
235 |
-
for folder in wg_folders:
|
236 |
-
if "wg" + str(wg_number) in folder.lower():
|
237 |
-
selected_folder = folder
|
238 |
-
break
|
239 |
-
|
240 |
-
url += "/" + selected_folder
|
241 |
-
logging.debug(url)
|
242 |
-
|
243 |
-
if selected_folder:
|
244 |
-
resp = requests.get(url, verify=False)
|
245 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
246 |
-
meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
|
247 |
-
).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())]
|
248 |
-
all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace(
|
249 |
-
"-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders]
|
250 |
-
|
251 |
-
return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))
|
252 |
-
|
253 |
-
# ============================================================================================================================================
|
254 |
-
|
255 |
-
|
256 |
-
@app.post("/get_dataframe", response_model=DataResponse)
|
257 |
-
def get_change_request_dataframe(req: DataRequest):
|
258 |
-
working_group = req.working_group
|
259 |
-
tsg = re.sub(r"\d+", "", working_group)
|
260 |
-
wg_number = re.search(r"\d", working_group).group(0)
|
261 |
-
url = "https://www.3gpp.org/ftp/tsg_" + tsg
|
262 |
-
logging.info("Fetching TDocs dataframe")
|
263 |
-
|
264 |
-
resp = requests.get(url, verify=False)
|
265 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
266 |
-
wg_folders = [item.get_text() for item in soup.select("tr td a")]
|
267 |
-
selected_folder = None
|
268 |
-
for folder in wg_folders:
|
269 |
-
if "wg" + str(wg_number) in folder.lower():
|
270 |
-
selected_folder = folder
|
271 |
-
break
|
272 |
-
|
273 |
-
url += "/" + selected_folder + "/" + req.meeting + "/docs"
|
274 |
-
resp = requests.get(url, verify=False)
|
275 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
276 |
-
files = [item.get_text() for item in soup.select("tr td a")
|
277 |
-
if item.get_text().endswith(".xlsx")]
|
278 |
-
|
279 |
-
if files == []:
|
280 |
-
raise HTTPException(status_code=404, detail="No XLSX has been found")
|
281 |
-
|
282 |
-
def gen_url(tdoc: str):
|
283 |
-
return f"{url}/{tdoc}.zip"
|
284 |
-
|
285 |
-
df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
|
286 |
-
filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(
|
287 |
-
df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
|
288 |
-
filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)
|
289 |
-
|
290 |
-
df = filtered_df.fillna("")
|
291 |
-
return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))
|
292 |
-
|
293 |
-
# ==================================================================================================================================
|
294 |
-
|
295 |
-
|
296 |
-
@app.post("/download_tdocs")
|
297 |
-
def download_tdocs(req: DownloadRequest):
|
298 |
-
"""Download the specified TDocs and zips them in a single archive"""
|
299 |
-
documents = req.documents
|
300 |
-
|
301 |
-
logging.info(f"Downloading TDocs: {documents}")
|
302 |
-
|
303 |
-
def process_document(doc: str):
|
304 |
-
doc_id = doc
|
305 |
-
url = requests.post(
|
306 |
-
'https://organizedprogrammers-3gppdocfinder.hf.space/find',
|
307 |
-
headers={"Content-Type": "application/json"},
|
308 |
-
data=json.dumps({"doc_id": doc_id}),
|
309 |
-
verify=False
|
310 |
-
)
|
311 |
-
logging.info(
|
312 |
-
f"Retrieving URL for doc {doc_id} returned http status {url.status_code}")
|
313 |
-
url = url.json()['url']
|
314 |
-
logging.debug(f"Doc URL for {doc_id} is {url}")
|
315 |
-
|
316 |
-
try:
|
317 |
-
txt = "\n".join(docx_to_txt(doc_id, url))
|
318 |
-
except Exception as e:
|
319 |
-
txt = f"Document {doc_id} text extraction failed: {e}"
|
320 |
-
return doc_id, txt.encode("utf-8")
|
321 |
-
|
322 |
-
# PERF: use asyncio?
|
323 |
-
def process_batch(batch):
|
324 |
-
results = {}
|
325 |
-
for doc in batch:
|
326 |
-
try:
|
327 |
-
doc_id, file_bytes = process_document(doc)
|
328 |
-
results[doc_id] = file_bytes
|
329 |
-
except Exception as e:
|
330 |
-
traceback.print_exception(e)
|
331 |
-
results[doc] = b"Erreur"
|
332 |
-
return results
|
333 |
-
|
334 |
-
documents_bytes = process_batch(documents)
|
335 |
-
|
336 |
-
zip_buffer = io.BytesIO()
|
337 |
-
with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file:
|
338 |
-
for doc_id, txt_data in documents_bytes.items():
|
339 |
-
zip_file.writestr(f'{doc_id}.txt', txt_data)
|
340 |
-
|
341 |
-
zip_buffer.seek(0)
|
342 |
-
return StreamingResponse(
|
343 |
-
zip_buffer,
|
344 |
-
media_type="application/zip"
|
345 |
-
)
|
346 |
-
|
347 |
-
# ========================================================================================================================
|
348 |
-
|
349 |
-
|
350 |
-
@app.post("/generate_requirements", response_model=RequirementsResponse)
|
351 |
-
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
|
352 |
-
"""Extract requirements from the specified TDocs using a LLM"""
|
353 |
-
|
354 |
-
documents = req.documents
|
355 |
-
n_docs = len(documents)
|
356 |
-
|
357 |
-
logging.info("Generating requirements for documents: {}".format(
|
358 |
-
[doc.document for doc in documents]))
|
359 |
-
|
360 |
-
def prompt(doc_id, full):
|
361 |
-
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
|
362 |
-
|
363 |
-
async def process_document(doc):
|
364 |
-
doc_id = doc.document
|
365 |
-
url = doc.url
|
366 |
-
try:
|
367 |
-
full = "\n".join(docx_to_txt(doc_id, url))
|
368 |
-
except Exception as e:
|
369 |
-
traceback.print_exception(e)
|
370 |
-
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
371 |
-
|
372 |
-
try:
|
373 |
-
resp_ai = await llm_router.acompletion(
|
374 |
-
model="gemini-v2",
|
375 |
-
messages=[
|
376 |
-
{"role": "user", "content": prompt(doc_id, full)}],
|
377 |
-
response_format=RequirementsResponse
|
378 |
-
)
|
379 |
-
|
380 |
-
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
381 |
-
|
382 |
-
except Exception as e:
|
383 |
-
logging.error(
|
384 |
-
f"Failed to process document {doc_id}", e, stack_info=True)
|
385 |
-
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
|
386 |
-
|
387 |
-
async def process_batch(batch):
|
388 |
-
results = await asyncio.gather(*(process_document(doc) for doc in batch))
|
389 |
-
return [item for sublist in results for item in sublist]
|
390 |
-
|
391 |
-
all_requirements = []
|
392 |
-
|
393 |
-
if n_docs <= 30:
|
394 |
-
batch_results = await process_batch(documents)
|
395 |
-
all_requirements.extend(batch_results)
|
396 |
-
else:
|
397 |
-
batch_size = 30
|
398 |
-
batches = [documents[i:i + batch_size]
|
399 |
-
for i in range(0, n_docs, batch_size)]
|
400 |
-
|
401 |
-
for i, batch in enumerate(batches):
|
402 |
-
batch_results = await process_batch(batch)
|
403 |
-
all_requirements.extend(batch_results)
|
404 |
-
|
405 |
-
if i < len(batches) - 1:
|
406 |
-
background_tasks.add_task(asyncio.sleep, 60)
|
407 |
-
return RequirementsResponse(requirements=all_requirements)
|
408 |
-
|
409 |
-
# ======================================================================================================================================================================================
|
410 |
-
|
411 |
-
|
412 |
-
class ProgressUpdate(BaseModel):
|
413 |
-
"""Defines the structure of a single SSE message."""
|
414 |
-
status: Literal["progress", "complete"]
|
415 |
-
data: dict
|
416 |
-
total_docs: int
|
417 |
-
processed_docs: int
|
418 |
-
|
419 |
-
|
420 |
-
@app.post("/generate_requirements/sse")
|
421 |
-
async def gen_reqs(req: RequirementsRequest, con: Request):
|
422 |
-
"""Extract requirements from the specified TDocs using a LLM and returns SSE events about the progress of ongoing operations"""
|
423 |
-
|
424 |
-
documents = req.documents
|
425 |
-
n_docs = len(documents)
|
426 |
-
|
427 |
-
logging.info("Generating requirements for documents: {}".format(
|
428 |
-
[doc.document for doc in documents]))
|
429 |
-
|
430 |
-
# limit max concurrency of LLM requests to prevent a huge pile of errors because of small rate limits
|
431 |
-
concurrency_sema = asyncio.Semaphore(4)
|
432 |
-
|
433 |
-
def prompt(doc_id, full):
|
434 |
-
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
|
435 |
-
|
436 |
-
async def _process_document(doc) -> list[DocRequirements]:
|
437 |
-
doc_id = doc.document
|
438 |
-
url = doc.url
|
439 |
-
|
440 |
-
# convert the docx to txt for use
|
441 |
-
try:
|
442 |
-
full = "\n".join(docx_to_txt(doc_id, url))
|
443 |
-
except Exception as e:
|
444 |
-
traceback.print_exception(e)
|
445 |
-
return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]
|
446 |
-
|
447 |
-
try:
|
448 |
-
await concurrency_sema.acquire()
|
449 |
-
|
450 |
-
model_used = "gemini-v2"
|
451 |
-
resp_ai = await llm_router.acompletion(
|
452 |
-
model=model_used,
|
453 |
-
messages=[
|
454 |
-
{"role": "user", "content": prompt(doc_id, full)}],
|
455 |
-
response_format=RequirementsResponse
|
456 |
-
)
|
457 |
-
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
|
458 |
-
except Exception as e:
|
459 |
-
return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])]
|
460 |
-
finally:
|
461 |
-
concurrency_sema.release()
|
462 |
-
|
463 |
-
# futures for all processed documents
|
464 |
-
process_futures = [_process_document(doc) for doc in documents]
|
465 |
-
|
466 |
-
# lambda to print progress
|
467 |
-
def progress_update(x): return f"data: {x.model_dump_json()}\n\n"
|
468 |
-
|
469 |
-
# async generator that generates the SSE events for progress
|
470 |
-
async def _stream_generator(docs: list[asyncio.Future]):
|
471 |
-
items = []
|
472 |
-
n_processed = 0
|
473 |
-
|
474 |
-
yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=0))
|
475 |
-
|
476 |
-
for doc in asyncio.as_completed(docs):
|
477 |
-
result = await doc
|
478 |
-
items.extend(result)
|
479 |
-
n_processed += 1
|
480 |
-
yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=n_processed))
|
481 |
-
|
482 |
-
final_response = RequirementsResponse(requirements=items)
|
483 |
-
|
484 |
-
yield progress_update(ProgressUpdate(status="complete", data=final_response.model_dump(), total_docs=n_docs, processed_docs=n_processed))
|
485 |
-
|
486 |
-
return StreamingResponse(_stream_generator(process_futures), media_type="text/event-stream")
|
487 |
# =======================================================================================================================================================================================
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
def find_requirements_from_problem_description(req: ReqSearchRequest):
|
492 |
-
requirements = req.requirements
|
493 |
-
query = req.query
|
494 |
-
|
495 |
-
requirements_text = "\n".join(
|
496 |
-
[f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements])
|
497 |
-
print("Called the LLM")
|
498 |
-
resp_ai = llm_router.completion(
|
499 |
-
model="gemini-v2",
|
500 |
-
messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}],
|
501 |
-
response_format=ReqSearchLLMResponse
|
502 |
-
)
|
503 |
-
print("Answered")
|
504 |
-
print(resp_ai.choices[0].message.content)
|
505 |
-
|
506 |
-
out_llm = ReqSearchLLMResponse.model_validate_json(
|
507 |
-
resp_ai.choices[0].message.content).selected
|
508 |
-
|
509 |
-
if max(out_llm) > len(requirements) - 1:
|
510 |
-
raise HTTPException(
|
511 |
-
status_code=500, detail="LLM error : Generated a wrong index, please try again.")
|
512 |
-
|
513 |
-
return ReqSearchResponse(requirements=[requirements[i] for i in out_llm])
|
514 |
-
|
515 |
-
|
516 |
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
|
|
1 |
import asyncio
|
2 |
import logging
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from typing import Literal
|
5 |
import nltk
|
|
|
6 |
import warnings
|
|
|
|
|
|
|
|
|
7 |
import os
|
8 |
+
from fastapi import Depends, FastAPI, BackgroundTasks, HTTPException, Request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from fastapi.staticfiles import StaticFiles
|
10 |
+
from dependencies import get_llm_router, init_dependencies
|
11 |
+
import api.docs
|
12 |
+
import api.requirements
|
13 |
+
from api.docs import docx_to_txt
|
14 |
from schemas import *
|
15 |
from fastapi.middleware.cors import CORSMiddleware
|
16 |
from fastapi.responses import FileResponse, StreamingResponse
|
17 |
from litellm.router import Router
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
|
|
25 |
datefmt='%Y-%m-%d %H:%M:%S'
|
26 |
)
|
27 |
|
28 |
+
# Initialize global dependencies
|
29 |
+
init_dependencies()
|
30 |
+
|
31 |
# Download required packages for NLTK
|
32 |
nltk.download('stopwords')
|
33 |
nltk.download('punkt_tab')
|
|
|
39 |
app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=[
|
40 |
"*"], allow_methods=["*"], allow_origins=["*"])
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# =======================================================================================================================================================================================
|
43 |
|
44 |
+
app.include_router(api.docs.router, prefix="/docs")
|
45 |
+
app.include_router(api.requirements.router, prefix="/requirements")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
dependencies.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from litellm.router import Router
|
3 |
+
|
4 |
+
# Declare all global app dependencies here
|
5 |
+
# - Setup your dependency global inside init_dependencies()
|
6 |
+
# - Create a get_xxxx_() function to retrieve the dependency inside the FastAPI router
|
7 |
+
|
8 |
+
|
9 |
+
def init_dependencies():
|
10 |
+
"""Initialize the application global dependencies"""
|
11 |
+
|
12 |
+
global llm_router
|
13 |
+
llm_router = Router(model_list=[
|
14 |
+
{
|
15 |
+
"model_name": "gemini-v1",
|
16 |
+
"litellm_params":
|
17 |
+
{
|
18 |
+
"model": "gemini/gemini-2.0-flash",
|
19 |
+
"api_key": os.environ.get("GEMINI"),
|
20 |
+
"max_retries": 5,
|
21 |
+
"rpm": 15,
|
22 |
+
"allowed_fails": 1,
|
23 |
+
"cooldown": 30,
|
24 |
+
}
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"model_name": "gemini-v2",
|
28 |
+
"litellm_params":
|
29 |
+
{
|
30 |
+
"model": "gemini/gemini-2.5-flash",
|
31 |
+
"api_key": os.environ.get("GEMINI"),
|
32 |
+
"max_retries": 5,
|
33 |
+
"rpm": 10,
|
34 |
+
"allowed_fails": 1,
|
35 |
+
"cooldown": 30,
|
36 |
+
}
|
37 |
+
}], fallbacks=[{"gemini-v2": ["gemini-v1"]}], num_retries=10, retry_after=30)
|
38 |
+
|
39 |
+
|
40 |
+
def get_llm_router() -> Router:
|
41 |
+
"""Retrieves the LLM router"""
|
42 |
+
return llm_router
|
static/js/script.js
CHANGED
@@ -32,7 +32,7 @@ async function getMeetings() {
|
|
32 |
toggleElementsEnabled(['get-meetings-btn'], false);
|
33 |
|
34 |
try {
|
35 |
-
const response = await fetch('/get_meetings', {
|
36 |
method: 'POST',
|
37 |
headers: { 'Content-Type': 'application/json' },
|
38 |
body: JSON.stringify({ working_group: workingGroup })
|
@@ -63,7 +63,7 @@ async function getTDocs() {
|
|
63 |
toggleElementsEnabled(['get-tdocs-btn'], false);
|
64 |
|
65 |
try {
|
66 |
-
const response = await fetch('/get_dataframe', {
|
67 |
method: 'POST',
|
68 |
headers: { 'Content-Type': 'application/json' },
|
69 |
body: JSON.stringify({ working_group: workingGroup, meeting: meeting })
|
@@ -238,7 +238,7 @@ async function downloadTDocs() {
|
|
238 |
// Transformer au format requis: [{tdoc_id: url}, ...]
|
239 |
const documents = selectedData.map(obj => obj.document)
|
240 |
|
241 |
-
const response = await fetch('/download_tdocs', {
|
242 |
method: 'POST',
|
243 |
headers: { 'Content-Type': 'application/json' },
|
244 |
body: JSON.stringify({ documents: documents })
|
@@ -322,7 +322,7 @@ async function extractRequirements() {
|
|
322 |
toggleElementsEnabled(['extract-requirements-btn'], false);
|
323 |
|
324 |
try {
|
325 |
-
const response = await postWithSSE('/generate_requirements/sse', { documents: selectedData }, {
|
326 |
onMessage: (msg) => {
|
327 |
console.log("SSE message:");
|
328 |
console.log(msg);
|
@@ -663,7 +663,7 @@ async function searchRequirements() {
|
|
663 |
|
664 |
try {
|
665 |
// Préparer les requirements pour la recherche
|
666 |
-
const response = await fetch('/get_reqs_from_query', {
|
667 |
method: 'POST',
|
668 |
headers: { 'Content-Type': 'application/json' },
|
669 |
body: JSON.stringify({
|
|
|
32 |
toggleElementsEnabled(['get-meetings-btn'], false);
|
33 |
|
34 |
try {
|
35 |
+
const response = await fetch('/docs/get_meetings', {
|
36 |
method: 'POST',
|
37 |
headers: { 'Content-Type': 'application/json' },
|
38 |
body: JSON.stringify({ working_group: workingGroup })
|
|
|
63 |
toggleElementsEnabled(['get-tdocs-btn'], false);
|
64 |
|
65 |
try {
|
66 |
+
const response = await fetch('/docs/get_dataframe', {
|
67 |
method: 'POST',
|
68 |
headers: { 'Content-Type': 'application/json' },
|
69 |
body: JSON.stringify({ working_group: workingGroup, meeting: meeting })
|
|
|
238 |
// Transformer au format requis: [{tdoc_id: url}, ...]
|
239 |
const documents = selectedData.map(obj => obj.document)
|
240 |
|
241 |
+
const response = await fetch('/docs/download_tdocs', {
|
242 |
method: 'POST',
|
243 |
headers: { 'Content-Type': 'application/json' },
|
244 |
body: JSON.stringify({ documents: documents })
|
|
|
322 |
toggleElementsEnabled(['extract-requirements-btn'], false);
|
323 |
|
324 |
try {
|
325 |
+
const response = await postWithSSE('/docs/generate_requirements/sse', { documents: selectedData }, {
|
326 |
onMessage: (msg) => {
|
327 |
console.log("SSE message:");
|
328 |
console.log(msg);
|
|
|
663 |
|
664 |
try {
|
665 |
// Préparer les requirements pour la recherche
|
666 |
+
const response = await fetch('/requirements/get_reqs_from_query', {
|
667 |
method: 'POST',
|
668 |
headers: { 'Content-Type': 'application/json' },
|
669 |
body: JSON.stringify({
|