import asyncio from typing import Literal from fastapi.routing import APIRouter import logging import string import io import traceback import zipfile import json import os from pydantic import BaseModel import requests import subprocess import pandas as pd import re from lxml import etree from nltk.tokenize import word_tokenize from bs4 import BeautifulSoup from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from fastapi import Depends, BackgroundTasks, HTTPException, Request from dependencies import get_llm_router from fastapi.responses import StreamingResponse from litellm.router import Router from schemas import DataRequest, DataResponse, DocRequirements, DownloadRequest, MeetingsRequest, MeetingsResponse, RequirementsRequest, RequirementsResponse # API router for requirement extraction from docs / doc list retrieval / download router = APIRouter(tags=["document extraction"]) # ==================================================== Utilities ================================================================= lemmatizer = WordNetLemmatizer() NSMAP = { 'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main', 'v': 'urn:schemas-microsoft-com:vml' } def lemma(text: str): stop_words = set(stopwords.words('english')) txt = text.translate(str.maketrans('', '', string.punctuation)).strip() tokens = [token for token in word_tokenize( txt.lower()) if token not in stop_words] return [lemmatizer.lemmatize(token) for token in tokens] def get_docx_archive(url: str) -> zipfile.ZipFile: """Récupère le docx depuis l'URL et le retourne comme objet ZipFile""" if not url.endswith("zip"): raise ValueError("URL doit pointer vers un fichier ZIP") doc_id = os.path.splitext(os.path.basename(url))[0] resp = requests.get(url, verify=False, headers={ "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' }) resp.raise_for_status() with zipfile.ZipFile(io.BytesIO(resp.content)) as zf: for file_name in zf.namelist(): if file_name.endswith(".docx"): docx_bytes = zf.read(file_name) return zipfile.ZipFile(io.BytesIO(docx_bytes)) elif file_name.endswith(".doc"): input_path = f"/tmp/{doc_id}.doc" output_path = f"/tmp/{doc_id}.docx" docx_bytes = zf.read(file_name) with open(input_path, "wb") as f: f.write(docx_bytes) subprocess.run([ "libreoffice", "--headless", "--convert-to", "docx", "--outdir", "/tmp", input_path ], check=True) with open(output_path, "rb") as f: docx_bytes = f.read() os.remove(input_path) os.remove(output_path) return zipfile.ZipFile(io.BytesIO(docx_bytes)) raise ValueError("Aucun fichier docx/doc trouvé dans l'archive") def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree: """Parse le document.xml principal""" xml_bytes = docx_zip.read('word/document.xml') parser = etree.XMLParser(remove_blank_text=True) return etree.fromstring(xml_bytes, parser=parser) def clean_document_xml(root: etree._Element) -> None: """Nettoie le XML en modifiant l'arbre directement""" # Suppression des balises et leur contenu for del_elem in root.xpath('//w:del', namespaces=NSMAP): parent = del_elem.getparent() if parent is not None: parent.remove(del_elem) # Désencapsulation des balises for ins_elem in root.xpath('//w:ins', namespaces=NSMAP): parent = ins_elem.getparent() index = parent.index(ins_elem) for child in ins_elem.iterchildren(): parent.insert(index, child) index += 1 parent.remove(ins_elem) # Nettoyage des commentaires for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']: for elem in root.xpath(f'//{tag}', namespaces=NSMAP): parent = elem.getparent() if parent is not None: parent.remove(elem) def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes: """Crée un nouveau docx avec le XML modifié""" output = io.BytesIO() with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip: # Copier tous les fichiers non modifiés for file in original_zip.infolist(): if file.filename != 'word/document.xml': new_zip.writestr(file, original_zip.read(file.filename)) # Ajouter le document.xml modifié xml_str = etree.tostring( modified_root, xml_declaration=True, encoding='UTF-8', pretty_print=True ) new_zip.writestr('word/document.xml', xml_str) output.seek(0) return output.getvalue() def docx_to_txt(doc_id: str, url: str): docx_zip = get_docx_archive(url) root = parse_document_xml(docx_zip) clean_document_xml(root) modified_bytes = create_modified_docx(docx_zip, root) input_path = f"/tmp/{doc_id}_cleaned.docx" output_path = f"/tmp/{doc_id}_cleaned.txt" with open(input_path, "wb") as f: f.write(modified_bytes) subprocess.run([ "libreoffice", "--headless", "--convert-to", "txt", "--outdir", "/tmp", input_path ], check=True) with open(output_path, "r", encoding="utf-8") as f: txt_data = [line.strip() for line in f if line.strip()] os.remove(input_path) os.remove(output_path) return txt_data # ============================================= Doc routes ========================================================= @router.post("/get_meetings", response_model=MeetingsResponse) def get_meetings(req: MeetingsRequest): working_group = req.working_group tsg = re.sub(r"\d+", "", working_group) wg_number = re.search(r"\d", working_group).group(0) logging.debug(tsg, wg_number) url = "https://www.3gpp.org/ftp/tsg_" + tsg logging.debug(url) resp = requests.get(url, verify=False) soup = BeautifulSoup(resp.text, "html.parser") meeting_folders = [] all_meetings = [] wg_folders = [item.get_text() for item in soup.select("tr td a")] selected_folder = None for folder in wg_folders: if "wg" + str(wg_number) in folder.lower(): selected_folder = folder break url += "/" + selected_folder logging.debug(url) if selected_folder: resp = requests.get(url, verify=False) soup = BeautifulSoup(resp.text, "html.parser") meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text( ).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())] all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace( "-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders] return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders))) # ============================================================================================================================================ @router.post("/get_dataframe", response_model=DataResponse) def get_change_request_dataframe(req: DataRequest): working_group = req.working_group tsg = re.sub(r"\d+", "", working_group) wg_number = re.search(r"\d", working_group).group(0) url = "https://www.3gpp.org/ftp/tsg_" + tsg logging.info("Fetching TDocs dataframe") resp = requests.get(url, verify=False) soup = BeautifulSoup(resp.text, "html.parser") wg_folders = [item.get_text() for item in soup.select("tr td a")] selected_folder = None for folder in wg_folders: if "wg" + str(wg_number) in folder.lower(): selected_folder = folder break url += "/" + selected_folder + "/" + req.meeting + "/docs" resp = requests.get(url, verify=False) soup = BeautifulSoup(resp.text, "html.parser") files = [item.get_text() for item in soup.select("tr td a") if item.get_text().endswith(".xlsx")] if files == []: raise HTTPException(status_code=404, detail="No XLSX has been found") def gen_url(tdoc: str): return f"{url}/{tdoc}.zip" df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23")) filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~( df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]] filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url) df = filtered_df.fillna("") return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records")) # ================================================================================================================================== @router.post("/download_tdocs") def download_tdocs(req: DownloadRequest): """Download the specified TDocs and zips them in a single archive""" documents = req.documents logging.info(f"Downloading TDocs: {documents}") def process_document(doc: str): doc_id = doc url = requests.post( 'https://organizedprogrammers-3gppdocfinder.hf.space/find', headers={"Content-Type": "application/json"}, data=json.dumps({"doc_id": doc_id}), verify=False ) logging.info( f"Retrieving URL for doc {doc_id} returned http status {url.status_code}") url = url.json()['url'] logging.debug(f"Doc URL for {doc_id} is {url}") try: txt = "\n".join(docx_to_txt(doc_id, url)) except Exception as e: txt = f"Document {doc_id} text extraction failed: {e}" return doc_id, txt.encode("utf-8") # PERF: use asyncio? def process_batch(batch): results = {} for doc in batch: try: doc_id, file_bytes = process_document(doc) results[doc_id] = file_bytes except Exception as e: traceback.print_exception(e) results[doc] = b"Erreur" return results documents_bytes = process_batch(documents) zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file: for doc_id, txt_data in documents_bytes.items(): zip_file.writestr(f'{doc_id}.txt', txt_data) zip_buffer.seek(0) return StreamingResponse( zip_buffer, media_type="application/zip" ) @router.post("/generate_requirements", response_model=RequirementsResponse) async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks, llm_router: Router = Depends(get_llm_router)): """Extract requirements from the specified TDocs using a LLM""" documents = req.documents n_docs = len(documents) logging.info("Generating requirements for documents: {}".format( [doc.document for doc in documents])) def prompt(doc_id, full): return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors" async def process_document(doc): doc_id = doc.document url = doc.url try: full = "\n".join(docx_to_txt(doc_id, url)) except Exception as e: logging.error(f"Failed to process doc {doc_id}", e) return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements try: resp_ai = await llm_router.acompletion( model="gemini-v2", messages=[ {"role": "user", "content": prompt(doc_id, full)}], response_format=RequirementsResponse ) return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements except Exception as e: logging.error( f"Failed to process document {doc_id}", e, stack_info=True) return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements async def process_batch(batch): results = await asyncio.gather(*(process_document(doc) for doc in batch)) return [item for sublist in results for item in sublist] all_requirements = [] if n_docs <= 30: batch_results = await process_batch(documents) all_requirements.extend(batch_results) else: batch_size = 30 batches = [documents[i:i + batch_size] for i in range(0, n_docs, batch_size)] for i, batch in enumerate(batches): batch_results = await process_batch(batch) all_requirements.extend(batch_results) if i < len(batches) - 1: background_tasks.add_task(asyncio.sleep, 60) return RequirementsResponse(requirements=all_requirements) # ====================================================================================================================================================================================== class ProgressUpdate(BaseModel): """Defines the structure of a single SSE message.""" status: Literal["progress", "complete"] data: dict total_docs: int processed_docs: int @router.post("/generate_requirements/sse") async def gen_reqs(req: RequirementsRequest, con: Request, llm_router: Router = Depends(get_llm_router)): """Extract requirements from the specified TDocs using a LLM and returns SSE events about the progress of ongoing operations""" documents = req.documents n_docs = len(documents) logging.info("Generating requirements for documents: {}".format( [doc.document for doc in documents])) # limit max concurrency of LLM requests to prevent a huge pile of errors because of small rate limits concurrency_sema = asyncio.Semaphore(4) def prompt(doc_id, full): return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors" async def _process_document(doc) -> list[DocRequirements]: doc_id = doc.document url = doc.url # convert the docx to txt for use try: full = "\n".join(docx_to_txt(doc_id, url)) except Exception as e: logging.error( f"Failed to process document {doc_id}", e, stack_info=True) return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])] try: await concurrency_sema.acquire() model_used = "gemini-v2" resp_ai = await llm_router.acompletion( model=model_used, messages=[ {"role": "user", "content": prompt(doc_id, full)}], response_format=RequirementsResponse ) return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements except Exception as e: return [DocRequirements(document=doc_id, context="Error LLM", requirements=[])] finally: concurrency_sema.release() # futures for all processed documents process_futures = [_process_document(doc) for doc in documents] # lambda to print progress def progress_update(x): return f"data: {x.model_dump_json()}\n\n" # async generator that generates the SSE events for progress async def _stream_generator(docs: list[asyncio.Future]): items = [] n_processed = 0 yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=0)) for doc in asyncio.as_completed(docs): result = await doc items.extend(result) n_processed += 1 yield progress_update(ProgressUpdate(status="progress", data={}, total_docs=n_docs, processed_docs=n_processed)) final_response = RequirementsResponse(requirements=items) yield progress_update(ProgressUpdate(status="complete", data=final_response.model_dump(), total_docs=n_docs, processed_docs=n_processed)) return StreamingResponse(_stream_generator(process_futures), media_type="text/event-stream")