|
from src.services.utils import * |
|
from src.services.processor import * |
|
|
|
dataset = load_data() |
|
|
|
|
|
def process_input(data, dataset, data_type): |
|
if data_type == "problem": |
|
prompt = set_prompt(data.problem) |
|
constraints = retrieve_constraints(prompt) |
|
|
|
elif data_type == "constraints": |
|
constraints = data |
|
|
|
constraints_stemmed = stem(constraints, "constraints") |
|
|
|
result_similarities, matrix = get_contrastive_similarities(constraints_stemmed, dataset) |
|
|
|
save_to_pickle(result_similarities) |
|
|
|
best_combinations = find_best_list_combinations(constraints_stemmed, dataset, matrix) |
|
best_technologies_id = select_technologies(best_combinations) |
|
best_technologies = get_technologies_by_id(best_technologies_id, dataset) |
|
|
|
return best_technologies |
|
|
|
def process_prior_art(technologies, data, data_type, techno_type): |
|
try: |
|
prior_art_reponse = search_prior_art(technologies, data, data_type, techno_type) |
|
prior_art_search = add_citations_and_collect_uris(prior_art_reponse) |
|
except Exception as e: |
|
print(f"An error occured during the process, trying again : {e}") |
|
prior_art_reponse = search_prior_art(technologies, data, data_type, techno_type) |
|
prior_art_search = add_citations_and_collect_uris(prior_art_reponse) |
|
print("PRIOR ART SEARCH") |
|
print(prior_art_reponse) |
|
print(prior_art_search) |
|
return prior_art_search |