insight-finder / src /services /processor.py
ALLOUNE
add forced technologies
a95c4ad
from src.services.utils import load_data, stem, set_gemini
import requests as r
import json
import nltk
import itertools
import numpy as np
import requests
from datasets import concatenate_datasets
from sentence_transformers import *
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def retrieve_constraints(prompt):
request_input = {"models": ["meta-llama/llama-4-scout-17b-16e-instruct"], "messages": [{"role":"user", "content":prompt}]}
response = r.post("https://organizedprogrammers-bettergroqinterface.hf.space/chat", json=request_input)
decoded_content = json.loads(response.content.decode())
llm_response = decoded_content["content"]
print(f"llm response : {llm_response}")
start_marker = '{'
end_marker = '}'
start_index = llm_response.find(start_marker) + len(start_marker)
end_index = llm_response.find(end_marker, start_index)
json_str = llm_response[start_index:end_index].strip()
constraints_json = json.loads("{"+json_str+"}")
return constraints_json
def remove_over_repeated_technologies(result):
total_lists = len(result)
tech_title = {}
for idx, item in enumerate(result):
for tech in item['technologies']:
tech_title[tech[0]['name']] = 0 if tech[0]['name'] not in tech_title else tech_title[tech[0]['name']] + 1
threshold = total_lists * 0.3
print(threshold)
print(tech_title)
to_delete = []
for tech, lists in tech_title.items():
if lists > threshold:
print(f"This technology have been found over repeated : " + tech)
to_delete.append(tech)
for idx, item in enumerate(result):
result[idx]['technologies'] = [tech for tech in item['technologies'] if tech[0]['name'] not in to_delete]
return result
def get_contrastive_similarities(constraints, dataset):
selected_pairs = []
matrix = []
constraint_descriptions = [c["description"] for c in constraints]
constraint_embeddings = model.encode(constraint_descriptions, show_progress_bar=False)
for i, constraint in enumerate(constraints):
constraint_embedding = constraint_embeddings[i]
constraint_matrix = []
for j, row in enumerate(dataset):
tech_embedding = row["embeddings"]
purpose_sim = model.similarity(constraint_embedding, tech_embedding)
if np.isnan(purpose_sim):
purpose_sim = 0.0
selected_pairs.append({
"constraint": constraint,
"id2": j,
"similarity": purpose_sim
})
constraint_matrix.append(purpose_sim)
matrix.append(constraint_matrix)
return selected_pairs, matrix
def find_best_list_combinations(list1: list[str], list2: list[str], matrix) -> list[dict]:
if not list1 or not list2:
print("Warning: One or both input lists are empty. Returning an empty list.")
return []
print(list2)
MIN_SIMILARITY = 0.3
MAX_SIMILARITY = 0.8
possible_matches_for_each_l1 = []
for i, row_i in enumerate(list1):
valid_matches_for_l1_element = []
for j, row_j in enumerate(list2):
score = matrix[i][j]
if MIN_SIMILARITY <= score <= MAX_SIMILARITY:
data = row_j
del data["embeddings"]
data["id"] = j
valid_matches_for_l1_element.append((data, score))
if not valid_matches_for_l1_element:
print(f"No valid matches found in list2 for '{row_i}' from list1 "
f"(score between {MIN_SIMILARITY} and {MAX_SIMILARITY}). "
"Returning an empty list as no complete combinations can be formed.")
else:
possible_matches_for_each_l1.append((valid_matches_for_l1_element, row_i))
result = []
for tech_list, problem in possible_matches_for_each_l1:
sorted_list = sorted(
tech_list,
key=lambda x: x[1].item() if hasattr(x[1], 'item') else float(x[1]),
reverse=True
)
top5 = sorted_list[:5]
result.append({
'technologies': top5,
'problem': problem
})
result = remove_over_repeated_technologies(result)
return result
def search_technology_by_name(user_input, dataset):
url = "https://heymenn-search-technologies-api.hf.space/search-technologies"
headers = {
"accept": "application/json",
"Content-Type": "application/json"
}
results = []
for input in user_input:
payload = {
"title": input,
"type": "title"
}
response = requests.post(url, headers=headers, json=payload)
print(response.json())
results.append(response.json())
technologies = []
for result in results:
technology = dataset.filter(lambda row: row["name"] == result["title"])
technologies.append(technology)
combined_dataset = concatenate_datasets(technologies)
return combined_dataset
def select_technologies(problem_technology_list, forced_technology_list=[]):
distinct_techs = set()
candidate_map = []
if len(forced_technology_list) == 0:
for problem_data in forced_technology_list:
cand_dict = {}
for tech_info, sim in problem_data['technologies']:
tech_id = tech_info['id']
distinct_techs.add(tech_id)
cand_dict[tech_id] = float(sim)
for problem_data in problem_technology_list:
cand_dict = {}
for tech_info, sim in problem_data['technologies']:
tech_id = tech_info['id']
distinct_techs.add(tech_id)
cand_dict[tech_id] = float(sim)
if cand_dict not in candidate_map:
candidate_map.append(cand_dict)
distinct_techs = sorted(list(distinct_techs))
n = len(problem_technology_list)
if n == 0:
return set()
min_k = None
best_set = None
best_avg = -1
print(f"Distinct technologies: {distinct_techs}")
print(f"Candidate map: {candidate_map}")
print(f"Number of problems: {n}")
for k in range(1, len(distinct_techs)+1):
if min_k is not None and k > min_k:
break
for T in itertools.combinations(distinct_techs, k):
total_sim = 0.0
covered = True
for i in range(n):
max_sim = -1.0
found = False
for tech in T:
if tech in candidate_map[i]:
found = True
sim_val = candidate_map[i][tech]
if sim_val > max_sim:
max_sim = sim_val
if not found:
covered = False
break
else:
total_sim += max_sim
if covered:
avg_sim = total_sim / n
if min_k is None or k < min_k:
min_k = k
best_set = T
best_avg = avg_sim
elif k == min_k and avg_sim > best_avg:
best_set = T
best_avg = avg_sim
if min_k is not None and k == min_k:
break
if best_set is None:
return set()
return set(best_set)
def load_titles(techno, data_type):
if data_type == "pydantic":
technology_titles = [tech.name for tech in techno]
else: # data_type == "dict"
technologies = techno["technologies"]
technology_titles = [tech["name"] for tech in technologies]
return technology_titles
def search_prior_art(technologies_input: list, data: str, data_type: str, techno_type: str) -> json:
"""
Searches for prior art patents online that solve a given technical problem
using a set of specified technologies, leveraging the Gemini model's search capabilities.
"""
technology_titles = load_titles(technologies_input, techno_type)
if data_type == "problem":
prompt = f"Find prior art patents or research paper online that address the technical problem: '{data}'. " \
elif data_type == "constraints":
prompt = f"Find prior art patents or research paper online that address those constraints: '{data}'. " \
prompt += f"Using any combination of the following technologies: {', '.join(technology_titles)}. " \
f"Specifically look for patents that integrate multiple of these technologies." \
f"Indicate for each document found what technologies is used inside of it from the provided list" \
f"Indicate for each document the solution, then the twist of this solution," \
f"What makes it different from all the other existing solutions." \
f"Output only one sentence for the solution and the twist." \
client,config = set_gemini()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=prompt,
config=config,
)
return response
def add_citations_and_collect_uris(response):
try:
print(response)
text = response.text
supports = response.candidates[0].grounding_metadata.grounding_supports
chunks = response.candidates[0].grounding_metadata.grounding_chunks
sorted_supports = sorted(supports, key=lambda s: s.segment.end_index, reverse=True)
uris_added = set()
for support in sorted_supports:
end_index = support.segment.end_index
if support.grounding_chunk_indices:
citation_links = []
for i in support.grounding_chunk_indices:
if i < len(chunks):
uri = chunks[i].web.uri
if uri not in text and uri not in uris_added:
citation_links.append(f"[{i + 1}]({uri})")
uris_added.add(uri)
if citation_links:
citation_string = ", ".join(citation_links)
text = text[:end_index] + citation_string + text[end_index:]
return {"content": text,"uris": list(uris_added)}
except Exception as e:
print(f"Error : {e}")
return {"content": e, "uris": []}