|
from src.services.utils import load_data, stem, set_gemini |
|
import requests as r |
|
import json |
|
import nltk |
|
import itertools |
|
import numpy as np |
|
import requests |
|
from datasets import concatenate_datasets |
|
|
|
from sentence_transformers import * |
|
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
def retrieve_constraints(prompt): |
|
request_input = {"models": ["meta-llama/llama-4-scout-17b-16e-instruct"], "messages": [{"role":"user", "content":prompt}]} |
|
response = r.post("https://organizedprogrammers-bettergroqinterface.hf.space/chat", json=request_input) |
|
decoded_content = json.loads(response.content.decode()) |
|
llm_response = decoded_content["content"] |
|
print(f"llm response : {llm_response}") |
|
|
|
start_marker = '{' |
|
end_marker = '}' |
|
start_index = llm_response.find(start_marker) + len(start_marker) |
|
end_index = llm_response.find(end_marker, start_index) |
|
json_str = llm_response[start_index:end_index].strip() |
|
|
|
constraints_json = json.loads("{"+json_str+"}") |
|
|
|
return constraints_json |
|
|
|
def remove_over_repeated_technologies(result): |
|
total_lists = len(result) |
|
tech_title = {} |
|
|
|
for idx, item in enumerate(result): |
|
for tech in item['technologies']: |
|
tech_title[tech[0]['name']] = 0 if tech[0]['name'] not in tech_title else tech_title[tech[0]['name']] + 1 |
|
|
|
threshold = total_lists * 0.3 |
|
print(threshold) |
|
print(tech_title) |
|
to_delete = [] |
|
for tech, lists in tech_title.items(): |
|
if lists > threshold: |
|
print(f"This technology have been found over repeated : " + tech) |
|
to_delete.append(tech) |
|
|
|
for idx, item in enumerate(result): |
|
result[idx]['technologies'] = [tech for tech in item['technologies'] if tech[0]['name'] not in to_delete] |
|
|
|
return result |
|
|
|
def get_contrastive_similarities(constraints, dataset): |
|
selected_pairs = [] |
|
matrix = [] |
|
|
|
constraint_descriptions = [c["description"] for c in constraints] |
|
constraint_embeddings = model.encode(constraint_descriptions, show_progress_bar=False) |
|
|
|
for i, constraint in enumerate(constraints): |
|
constraint_embedding = constraint_embeddings[i] |
|
constraint_matrix = [] |
|
for j, row in enumerate(dataset): |
|
tech_embedding = row["embeddings"] |
|
|
|
purpose_sim = model.similarity(constraint_embedding, tech_embedding) |
|
|
|
if np.isnan(purpose_sim): |
|
purpose_sim = 0.0 |
|
|
|
selected_pairs.append({ |
|
"constraint": constraint, |
|
"id2": j, |
|
"similarity": purpose_sim |
|
}) |
|
constraint_matrix.append(purpose_sim) |
|
matrix.append(constraint_matrix) |
|
return selected_pairs, matrix |
|
|
|
def find_best_list_combinations(list1: list[str], list2: list[str], matrix) -> list[dict]: |
|
if not list1 or not list2: |
|
print("Warning: One or both input lists are empty. Returning an empty list.") |
|
return [] |
|
|
|
print(list2) |
|
|
|
MIN_SIMILARITY = 0.3 |
|
MAX_SIMILARITY = 0.8 |
|
|
|
possible_matches_for_each_l1 = [] |
|
for i, row_i in enumerate(list1): |
|
valid_matches_for_l1_element = [] |
|
for j, row_j in enumerate(list2): |
|
score = matrix[i][j] |
|
|
|
if MIN_SIMILARITY <= score <= MAX_SIMILARITY: |
|
data = row_j |
|
del data["embeddings"] |
|
data["id"] = j |
|
valid_matches_for_l1_element.append((data, score)) |
|
|
|
if not valid_matches_for_l1_element: |
|
print(f"No valid matches found in list2 for '{row_i}' from list1 " |
|
f"(score between {MIN_SIMILARITY} and {MAX_SIMILARITY}). " |
|
"Returning an empty list as no complete combinations can be formed.") |
|
|
|
else: |
|
possible_matches_for_each_l1.append((valid_matches_for_l1_element, row_i)) |
|
|
|
result = [] |
|
for tech_list, problem in possible_matches_for_each_l1: |
|
sorted_list = sorted( |
|
tech_list, |
|
key=lambda x: x[1].item() if hasattr(x[1], 'item') else float(x[1]), |
|
reverse=True |
|
) |
|
top5 = sorted_list[:5] |
|
result.append({ |
|
'technologies': top5, |
|
'problem': problem |
|
}) |
|
|
|
result = remove_over_repeated_technologies(result) |
|
return result |
|
|
|
def search_technology_by_name(user_input, dataset): |
|
url = "https://heymenn-search-technologies-api.hf.space/search-technologies" |
|
|
|
headers = { |
|
"accept": "application/json", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
results = [] |
|
for input in user_input: |
|
payload = { |
|
"title": input, |
|
"type": "title" |
|
} |
|
response = requests.post(url, headers=headers, json=payload) |
|
print(response.json()) |
|
results.append(response.json()) |
|
|
|
technologies = [] |
|
for result in results: |
|
technology = dataset.filter(lambda row: row["name"] == result["title"]) |
|
technologies.append(technology) |
|
|
|
combined_dataset = concatenate_datasets(technologies) |
|
return combined_dataset |
|
|
|
|
|
def select_technologies(problem_technology_list, forced_technology_list=[]): |
|
distinct_techs = set() |
|
candidate_map = [] |
|
|
|
if len(forced_technology_list) == 0: |
|
for problem_data in forced_technology_list: |
|
cand_dict = {} |
|
for tech_info, sim in problem_data['technologies']: |
|
tech_id = tech_info['id'] |
|
distinct_techs.add(tech_id) |
|
cand_dict[tech_id] = float(sim) |
|
|
|
for problem_data in problem_technology_list: |
|
cand_dict = {} |
|
for tech_info, sim in problem_data['technologies']: |
|
tech_id = tech_info['id'] |
|
distinct_techs.add(tech_id) |
|
cand_dict[tech_id] = float(sim) |
|
if cand_dict not in candidate_map: |
|
candidate_map.append(cand_dict) |
|
|
|
distinct_techs = sorted(list(distinct_techs)) |
|
n = len(problem_technology_list) |
|
|
|
if n == 0: |
|
return set() |
|
|
|
min_k = None |
|
best_set = None |
|
best_avg = -1 |
|
|
|
print(f"Distinct technologies: {distinct_techs}") |
|
print(f"Candidate map: {candidate_map}") |
|
print(f"Number of problems: {n}") |
|
|
|
for k in range(1, len(distinct_techs)+1): |
|
if min_k is not None and k > min_k: |
|
break |
|
|
|
for T in itertools.combinations(distinct_techs, k): |
|
total_sim = 0.0 |
|
covered = True |
|
for i in range(n): |
|
max_sim = -1.0 |
|
found = False |
|
for tech in T: |
|
if tech in candidate_map[i]: |
|
found = True |
|
sim_val = candidate_map[i][tech] |
|
if sim_val > max_sim: |
|
max_sim = sim_val |
|
if not found: |
|
covered = False |
|
break |
|
else: |
|
total_sim += max_sim |
|
|
|
if covered: |
|
avg_sim = total_sim / n |
|
if min_k is None or k < min_k: |
|
min_k = k |
|
best_set = T |
|
best_avg = avg_sim |
|
elif k == min_k and avg_sim > best_avg: |
|
best_set = T |
|
best_avg = avg_sim |
|
|
|
if min_k is not None and k == min_k: |
|
break |
|
|
|
if best_set is None: |
|
return set() |
|
return set(best_set) |
|
|
|
def load_titles(techno, data_type): |
|
if data_type == "pydantic": |
|
technology_titles = [tech.name for tech in techno] |
|
else: |
|
technologies = techno["technologies"] |
|
technology_titles = [tech["name"] for tech in technologies] |
|
return technology_titles |
|
|
|
def search_prior_art(technologies_input: list, data: str, data_type: str, techno_type: str) -> json: |
|
""" |
|
Searches for prior art patents online that solve a given technical problem |
|
using a set of specified technologies, leveraging the Gemini model's search capabilities. |
|
""" |
|
|
|
technology_titles = load_titles(technologies_input, techno_type) |
|
|
|
if data_type == "problem": |
|
prompt = f"Find prior art patents or research paper online that address the technical problem: '{data}'. " \ |
|
|
|
elif data_type == "constraints": |
|
prompt = f"Find prior art patents or research paper online that address those constraints: '{data}'. " \ |
|
|
|
prompt += f"Using any combination of the following technologies: {', '.join(technology_titles)}. " \ |
|
f"Specifically look for patents that integrate multiple of these technologies." \ |
|
f"Indicate for each document found what technologies is used inside of it from the provided list" \ |
|
f"Indicate for each document the solution, then the twist of this solution," \ |
|
f"What makes it different from all the other existing solutions." \ |
|
f"Output only one sentence for the solution and the twist." \ |
|
|
|
client,config = set_gemini() |
|
|
|
response = client.models.generate_content( |
|
model="gemini-2.5-flash", |
|
contents=prompt, |
|
config=config, |
|
) |
|
|
|
return response |
|
|
|
def add_citations_and_collect_uris(response): |
|
try: |
|
print(response) |
|
text = response.text |
|
supports = response.candidates[0].grounding_metadata.grounding_supports |
|
chunks = response.candidates[0].grounding_metadata.grounding_chunks |
|
|
|
sorted_supports = sorted(supports, key=lambda s: s.segment.end_index, reverse=True) |
|
|
|
uris_added = set() |
|
|
|
for support in sorted_supports: |
|
end_index = support.segment.end_index |
|
if support.grounding_chunk_indices: |
|
citation_links = [] |
|
for i in support.grounding_chunk_indices: |
|
if i < len(chunks): |
|
uri = chunks[i].web.uri |
|
if uri not in text and uri not in uris_added: |
|
citation_links.append(f"[{i + 1}]({uri})") |
|
uris_added.add(uri) |
|
if citation_links: |
|
citation_string = ", ".join(citation_links) |
|
text = text[:end_index] + citation_string + text[end_index:] |
|
return {"content": text,"uris": list(uris_added)} |
|
except Exception as e: |
|
print(f"Error : {e}") |
|
return {"content": e, "uris": []} |