Spaces:
Running
Running
Upload 3 files
Browse files
models/ChatGLM/config.json
CHANGED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/chatglm-6b",
|
3 |
+
"architectures": [
|
4 |
+
"ChatGLMModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
8 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"bos_token_id": 130004,
|
12 |
+
"eos_token_id": 130005,
|
13 |
+
"mask_token_id": 130000,
|
14 |
+
"gmask_token_id": 130001,
|
15 |
+
"pad_token_id": 3,
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"inner_hidden_size": 16384,
|
18 |
+
"layernorm_epsilon": 1e-05,
|
19 |
+
"max_sequence_length": 2048,
|
20 |
+
"model_type": "chatglm",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_layers": 28,
|
23 |
+
"position_encoding_2d": true,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.23.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 130528
|
28 |
+
}
|
models/ChatGLM/configuration_chatglm.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ChatGLM model configuration """
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class ChatGLMConfig(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
+
for more information.
|
19 |
+
|
20 |
+
|
21 |
+
Args:
|
22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
+
[`~TFChatGLMModel`].
|
26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
+
Dimension of the encoder layers and the pooler layer.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with.
|
36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
+
The epsilon used by the layer normalization layers.
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
+
Example:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
46 |
+
|
47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
+
>>> configuration = ChatGLMConfig()
|
49 |
+
|
50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
+
>>> model = ChatGLMModel(configuration)
|
52 |
+
|
53 |
+
>>> # Accessing the model configuration
|
54 |
+
>>> configuration = model.config
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
model_type = "chatglm"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_size=150528,
|
62 |
+
hidden_size=4096,
|
63 |
+
num_layers=28,
|
64 |
+
num_attention_heads=32,
|
65 |
+
layernorm_epsilon=1e-5,
|
66 |
+
use_cache=False,
|
67 |
+
bos_token_id=150004,
|
68 |
+
eos_token_id=150005,
|
69 |
+
mask_token_id=150000,
|
70 |
+
gmask_token_id=150001,
|
71 |
+
pad_token_id=0,
|
72 |
+
max_sequence_length=2048,
|
73 |
+
inner_hidden_size=16384,
|
74 |
+
position_encoding_2d=True,
|
75 |
+
quantization_bit=0,
|
76 |
+
pre_seq_len=None,
|
77 |
+
prefix_projection=False,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
self.num_layers = num_layers
|
81 |
+
self.vocab_size = vocab_size
|
82 |
+
self.hidden_size = hidden_size
|
83 |
+
self.num_attention_heads = num_attention_heads
|
84 |
+
self.max_sequence_length = max_sequence_length
|
85 |
+
self.layernorm_epsilon = layernorm_epsilon
|
86 |
+
self.inner_hidden_size = inner_hidden_size
|
87 |
+
self.use_cache = use_cache
|
88 |
+
self.bos_token_id = bos_token_id
|
89 |
+
self.eos_token_id = eos_token_id
|
90 |
+
self.pad_token_id = pad_token_id
|
91 |
+
self.mask_token_id = mask_token_id
|
92 |
+
self.gmask_token_id = gmask_token_id
|
93 |
+
self.position_encoding_2d = position_encoding_2d
|
94 |
+
self.quantization_bit = quantization_bit
|
95 |
+
self.pre_seq_len = pre_seq_len
|
96 |
+
self.prefix_projection = prefix_projection
|
97 |
+
|
98 |
+
super().__init__(
|
99 |
+
pad_token_id=pad_token_id,
|
100 |
+
bos_token_id=bos_token_id,
|
101 |
+
eos_token_id=eos_token_id,
|
102 |
+
**kwargs
|
103 |
+
)
|
models/ChatGLM/tokenization_chatglm.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for ChatGLM."""
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
import os
|
4 |
+
|
5 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
from typing import Dict
|
9 |
+
import sentencepiece as spm
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
15 |
+
"THUDM/chatglm-6b": 2048,
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class TextTokenizer:
|
20 |
+
def __init__(self, model_path):
|
21 |
+
self.sp = spm.SentencePieceProcessor()
|
22 |
+
self.sp.Load(model_path)
|
23 |
+
self.num_tokens = self.sp.vocab_size()
|
24 |
+
|
25 |
+
def encode(self, text):
|
26 |
+
return self.sp.EncodeAsIds(text)
|
27 |
+
|
28 |
+
def decode(self, ids: List[int]):
|
29 |
+
return self.sp.DecodeIds(ids)
|
30 |
+
|
31 |
+
def tokenize(self, text):
|
32 |
+
return self.sp.EncodeAsPieces(text)
|
33 |
+
|
34 |
+
def convert_tokens_to_string(self, tokens):
|
35 |
+
return self.sp.DecodePieces(tokens)
|
36 |
+
|
37 |
+
def convert_tokens_to_ids(self, tokens):
|
38 |
+
return [self.sp.PieceToId(token) for token in tokens]
|
39 |
+
|
40 |
+
def convert_token_to_id(self, token):
|
41 |
+
return self.sp.PieceToId(token)
|
42 |
+
|
43 |
+
def convert_id_to_token(self, idx):
|
44 |
+
return self.sp.IdToPiece(idx)
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return self.num_tokens
|
48 |
+
|
49 |
+
|
50 |
+
class SPTokenizer:
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_file,
|
54 |
+
num_image_tokens=20000,
|
55 |
+
max_blank_length=80,
|
56 |
+
byte_fallback=True,
|
57 |
+
):
|
58 |
+
assert vocab_file is not None
|
59 |
+
self.vocab_file = vocab_file
|
60 |
+
self.num_image_tokens = num_image_tokens
|
61 |
+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
62 |
+
self.max_blank_length = max_blank_length
|
63 |
+
self.byte_fallback = byte_fallback
|
64 |
+
self.text_tokenizer = TextTokenizer(vocab_file)
|
65 |
+
|
66 |
+
def _get_text_tokenizer(self):
|
67 |
+
return self.text_tokenizer
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def get_blank_token(length: int):
|
71 |
+
assert length >= 2
|
72 |
+
return f"<|blank_{length}|>"
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def get_tab_token():
|
76 |
+
return f"<|tab|>"
|
77 |
+
|
78 |
+
@property
|
79 |
+
def num_text_tokens(self):
|
80 |
+
return self.text_tokenizer.num_tokens
|
81 |
+
|
82 |
+
@property
|
83 |
+
def num_tokens(self):
|
84 |
+
return self.num_image_tokens + self.num_text_tokens
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def _encode_whitespaces(text: str, max_len: int = 80):
|
88 |
+
text = text.replace("\t", SPTokenizer.get_tab_token())
|
89 |
+
for i in range(max_len, 1, -1):
|
90 |
+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
91 |
+
return text
|
92 |
+
|
93 |
+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
94 |
+
if linebreak:
|
95 |
+
text = text.replace("\n", "<n>")
|
96 |
+
if whitespaces:
|
97 |
+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
98 |
+
return text
|
99 |
+
|
100 |
+
def encode(
|
101 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
102 |
+
) -> List[int]:
|
103 |
+
"""
|
104 |
+
@param text: Text to encode.
|
105 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
106 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
107 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
108 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
109 |
+
"""
|
110 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
111 |
+
if not add_dummy_prefix:
|
112 |
+
text = "<n>" + text
|
113 |
+
tmp = self._get_text_tokenizer().encode(text)
|
114 |
+
tokens = [x + self.num_image_tokens for x in tmp]
|
115 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
116 |
+
|
117 |
+
def postprocess(self, text):
|
118 |
+
text = text.replace("<n>", "\n")
|
119 |
+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
120 |
+
for i in range(2, self.max_blank_length + 1):
|
121 |
+
text = text.replace(self.get_blank_token(i), " " * i)
|
122 |
+
return text
|
123 |
+
|
124 |
+
def decode(self, text_ids: List[int]) -> str:
|
125 |
+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
126 |
+
ids = [_id for _id in ids if _id >= 0]
|
127 |
+
text = self._get_text_tokenizer().decode(ids)
|
128 |
+
text = self.postprocess(text)
|
129 |
+
return text
|
130 |
+
|
131 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
132 |
+
text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
|
133 |
+
text = self.postprocess(text)
|
134 |
+
return text
|
135 |
+
|
136 |
+
def tokenize(
|
137 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
138 |
+
) -> List[str]:
|
139 |
+
"""
|
140 |
+
@param text: Text to encode.
|
141 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
142 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
143 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
144 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
145 |
+
"""
|
146 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
147 |
+
if not add_dummy_prefix:
|
148 |
+
text = "<n>" + text
|
149 |
+
tokens = self._get_text_tokenizer().tokenize(text)
|
150 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
151 |
+
|
152 |
+
def __getitem__(self, x: Union[int, str]):
|
153 |
+
if isinstance(x, int):
|
154 |
+
if x < self.num_image_tokens:
|
155 |
+
return "<image_{}>".format(x)
|
156 |
+
else:
|
157 |
+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
158 |
+
elif isinstance(x, str):
|
159 |
+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
160 |
+
return int(x[7:-1])
|
161 |
+
else:
|
162 |
+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
163 |
+
else:
|
164 |
+
raise ValueError("The key should be str or int.")
|
165 |
+
|
166 |
+
|
167 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
168 |
+
"""
|
169 |
+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
vocab_file (`str`):
|
173 |
+
Path to the vocabulary file.
|
174 |
+
"""
|
175 |
+
|
176 |
+
vocab_files_names = {"vocab_file": "ice_text.model"}
|
177 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
178 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
vocab_file,
|
183 |
+
do_lower_case=False,
|
184 |
+
remove_space=False,
|
185 |
+
bos_token='<sop>',
|
186 |
+
eos_token='<eop>',
|
187 |
+
end_token='</s>',
|
188 |
+
mask_token='[MASK]',
|
189 |
+
gmask_token='[gMASK]',
|
190 |
+
padding_side="left",
|
191 |
+
pad_token="<pad>",
|
192 |
+
unk_token="<unk>",
|
193 |
+
num_image_tokens=20000,
|
194 |
+
**kwargs
|
195 |
+
) -> None:
|
196 |
+
super().__init__(
|
197 |
+
do_lower_case=do_lower_case,
|
198 |
+
remove_space=remove_space,
|
199 |
+
padding_side=padding_side,
|
200 |
+
bos_token=bos_token,
|
201 |
+
eos_token=eos_token,
|
202 |
+
end_token=end_token,
|
203 |
+
mask_token=mask_token,
|
204 |
+
gmask_token=gmask_token,
|
205 |
+
pad_token=pad_token,
|
206 |
+
unk_token=unk_token,
|
207 |
+
num_image_tokens=num_image_tokens,
|
208 |
+
**kwargs
|
209 |
+
)
|
210 |
+
|
211 |
+
self.do_lower_case = do_lower_case
|
212 |
+
self.remove_space = remove_space
|
213 |
+
self.vocab_file = vocab_file
|
214 |
+
|
215 |
+
self.bos_token = bos_token
|
216 |
+
self.eos_token = eos_token
|
217 |
+
self.end_token = end_token
|
218 |
+
self.mask_token = mask_token
|
219 |
+
self.gmask_token = gmask_token
|
220 |
+
|
221 |
+
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
|
222 |
+
|
223 |
+
""" Initialisation """
|
224 |
+
|
225 |
+
@property
|
226 |
+
def gmask_token_id(self) -> Optional[int]:
|
227 |
+
if self.gmask_token is None:
|
228 |
+
return None
|
229 |
+
return self.convert_tokens_to_ids(self.gmask_token)
|
230 |
+
|
231 |
+
@property
|
232 |
+
def end_token_id(self) -> Optional[int]:
|
233 |
+
"""
|
234 |
+
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
|
235 |
+
set.
|
236 |
+
"""
|
237 |
+
if self.end_token is None:
|
238 |
+
return None
|
239 |
+
return self.convert_tokens_to_ids(self.end_token)
|
240 |
+
|
241 |
+
@property
|
242 |
+
def vocab_size(self):
|
243 |
+
""" Returns vocab size """
|
244 |
+
return self.sp_tokenizer.num_tokens
|
245 |
+
|
246 |
+
def get_vocab(self):
|
247 |
+
""" Returns vocab as a dict """
|
248 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
249 |
+
vocab.update(self.added_tokens_encoder)
|
250 |
+
return vocab
|
251 |
+
|
252 |
+
def preprocess_text(self, inputs):
|
253 |
+
if self.remove_space:
|
254 |
+
outputs = " ".join(inputs.strip().split())
|
255 |
+
else:
|
256 |
+
outputs = inputs
|
257 |
+
|
258 |
+
if self.do_lower_case:
|
259 |
+
outputs = outputs.lower()
|
260 |
+
|
261 |
+
return outputs
|
262 |
+
|
263 |
+
def _tokenize(self, text, **kwargs):
|
264 |
+
""" Returns a tokenized string. """
|
265 |
+
text = self.preprocess_text(text)
|
266 |
+
|
267 |
+
seq = self.sp_tokenizer.tokenize(text)
|
268 |
+
|
269 |
+
return seq
|
270 |
+
|
271 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
272 |
+
return self.sp_tokenizer.decode_tokens(tokens)
|
273 |
+
|
274 |
+
def _decode(
|
275 |
+
self,
|
276 |
+
token_ids: Union[int, List[int]],
|
277 |
+
**kwargs
|
278 |
+
) -> str:
|
279 |
+
if isinstance(token_ids, int):
|
280 |
+
token_ids = [token_ids]
|
281 |
+
if len(token_ids) == 0:
|
282 |
+
return ""
|
283 |
+
if self.pad_token_id in token_ids: # remove pad
|
284 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
285 |
+
return super()._decode(token_ids, **kwargs)
|
286 |
+
|
287 |
+
def _convert_token_to_id(self, token):
|
288 |
+
""" Converts a token (str) in an id using the vocab. """
|
289 |
+
return self.sp_tokenizer[token]
|
290 |
+
|
291 |
+
def _convert_id_to_token(self, index):
|
292 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
293 |
+
return self.sp_tokenizer[index]
|
294 |
+
|
295 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
296 |
+
"""
|
297 |
+
Save the vocabulary and special tokens file to a directory.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
save_directory (`str`):
|
301 |
+
The directory in which to save the vocabulary.
|
302 |
+
filename_prefix (`str`, *optional*):
|
303 |
+
An optional prefix to add to the named of the saved files.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
`Tuple(str)`: Paths to the files saved.
|
307 |
+
"""
|
308 |
+
if os.path.isdir(save_directory):
|
309 |
+
vocab_file = os.path.join(
|
310 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
vocab_file = save_directory
|
314 |
+
|
315 |
+
with open(self.vocab_file, 'rb') as fin:
|
316 |
+
proto_str = fin.read()
|
317 |
+
|
318 |
+
with open(vocab_file, "wb") as writer:
|
319 |
+
writer.write(proto_str)
|
320 |
+
|
321 |
+
return (vocab_file,)
|
322 |
+
|
323 |
+
def build_inputs_with_special_tokens(
|
324 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
325 |
+
) -> List[int]:
|
326 |
+
"""
|
327 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
328 |
+
adding special tokens. A BERT sequence has the following format:
|
329 |
+
|
330 |
+
- single sequence: `[CLS] X [SEP]`
|
331 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
332 |
+
|
333 |
+
Args:
|
334 |
+
token_ids_0 (`List[int]`):
|
335 |
+
List of IDs to which the special tokens will be added.
|
336 |
+
token_ids_1 (`List[int]`, *optional*):
|
337 |
+
Optional second list of IDs for sequence pairs.
|
338 |
+
|
339 |
+
Returns:
|
340 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
341 |
+
"""
|
342 |
+
gmask_id = self.sp_tokenizer[self.gmask_token]
|
343 |
+
eos_id = self.sp_tokenizer[self.eos_token]
|
344 |
+
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
|
345 |
+
if token_ids_1 is not None:
|
346 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
|
347 |
+
return token_ids_0
|
348 |
+
|
349 |
+
def _pad(
|
350 |
+
self,
|
351 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
352 |
+
max_length: Optional[int] = None,
|
353 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
354 |
+
pad_to_multiple_of: Optional[int] = None,
|
355 |
+
return_attention_mask: Optional[bool] = None,
|
356 |
+
) -> dict:
|
357 |
+
"""
|
358 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
359 |
+
|
360 |
+
Args:
|
361 |
+
encoded_inputs:
|
362 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
363 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
364 |
+
Will truncate by taking into account the special tokens.
|
365 |
+
padding_strategy: PaddingStrategy to use for padding.
|
366 |
+
|
367 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
368 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
369 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
370 |
+
The tokenizer padding sides are defined in self.padding_side:
|
371 |
+
|
372 |
+
- 'left': pads on the left of the sequences
|
373 |
+
- 'right': pads on the right of the sequences
|
374 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
375 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
376 |
+
`>= 7.5` (Volta).
|
377 |
+
return_attention_mask:
|
378 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
379 |
+
"""
|
380 |
+
# Load from model defaults
|
381 |
+
bos_token_id = self.sp_tokenizer[self.bos_token]
|
382 |
+
mask_token_id = self.sp_tokenizer[self.mask_token]
|
383 |
+
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
384 |
+
assert self.padding_side == "left"
|
385 |
+
|
386 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
387 |
+
seq_length = len(required_input)
|
388 |
+
|
389 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
390 |
+
max_length = len(required_input)
|
391 |
+
|
392 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
393 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
394 |
+
|
395 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
396 |
+
|
397 |
+
# Initialize attention mask if not present.
|
398 |
+
if max_length is not None:
|
399 |
+
if "attention_mask" not in encoded_inputs:
|
400 |
+
if bos_token_id in required_input:
|
401 |
+
context_length = required_input.index(bos_token_id)
|
402 |
+
else:
|
403 |
+
context_length = seq_length
|
404 |
+
attention_mask = np.ones((1, seq_length, seq_length))
|
405 |
+
attention_mask = np.tril(attention_mask)
|
406 |
+
attention_mask[:, :, :context_length] = 1
|
407 |
+
attention_mask = np.bool_(attention_mask < 0.5)
|
408 |
+
encoded_inputs["attention_mask"] = attention_mask
|
409 |
+
|
410 |
+
if "position_ids" not in encoded_inputs:
|
411 |
+
if bos_token_id in required_input:
|
412 |
+
context_length = required_input.index(bos_token_id)
|
413 |
+
else:
|
414 |
+
context_length = seq_length
|
415 |
+
position_ids = np.arange(seq_length, dtype=np.int64)
|
416 |
+
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
417 |
+
if mask_token in required_input:
|
418 |
+
mask_position = required_input.index(mask_token)
|
419 |
+
position_ids[context_length:] = mask_position
|
420 |
+
block_position_ids = np.concatenate(
|
421 |
+
[np.zeros(context_length, dtype=np.int64),
|
422 |
+
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
423 |
+
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
424 |
+
|
425 |
+
if needs_to_be_padded:
|
426 |
+
difference = max_length - len(required_input)
|
427 |
+
|
428 |
+
if "attention_mask" in encoded_inputs:
|
429 |
+
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
430 |
+
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
431 |
+
mode='constant', constant_values=True)
|
432 |
+
if "token_type_ids" in encoded_inputs:
|
433 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
434 |
+
"token_type_ids"
|
435 |
+
]
|
436 |
+
if "special_tokens_mask" in encoded_inputs:
|
437 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
438 |
+
if "position_ids" in encoded_inputs:
|
439 |
+
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
440 |
+
pad_width=[(0, 0), (difference, 0)])
|
441 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
442 |
+
|
443 |
+
return encoded_inputs
|