Orion-zhen commited on
Commit
7f65e39
·
verified ·
1 Parent(s): d5be105

Delete models/ChatGLM

Browse files
models/ChatGLM/config.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "_name_or_path": "THUDM/chatglm-6b",
3
- "architectures": [
4
- "ChatGLMModel"
5
- ],
6
- "auto_map": {
7
- "AutoConfig": "configuration_chatglm.ChatGLMConfig",
8
- "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
9
- "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
10
- },
11
- "bos_token_id": 130004,
12
- "eos_token_id": 130005,
13
- "mask_token_id": 130000,
14
- "gmask_token_id": 130001,
15
- "pad_token_id": 3,
16
- "hidden_size": 4096,
17
- "inner_hidden_size": 16384,
18
- "layernorm_epsilon": 1e-05,
19
- "max_sequence_length": 2048,
20
- "model_type": "chatglm",
21
- "num_attention_heads": 32,
22
- "num_layers": 28,
23
- "position_encoding_2d": true,
24
- "torch_dtype": "float16",
25
- "transformers_version": "4.23.1",
26
- "use_cache": true,
27
- "vocab_size": 130528
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/ChatGLM/configuration_chatglm.py DELETED
@@ -1,103 +0,0 @@
1
- """ ChatGLM model configuration """
2
-
3
- from transformers.configuration_utils import PretrainedConfig
4
- from transformers.utils import logging
5
-
6
- logger = logging.get_logger(__name__)
7
-
8
-
9
- class ChatGLMConfig(PretrainedConfig):
10
- r"""
11
- This is the configuration class to store the configuration of a [`~ChatGLMModel`].
12
- It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
13
- architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
14
- the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
15
-
16
- Configuration objects inherit from [`PretrainedConfig`] and can be used
17
- to control the model outputs. Read the documentation from [`PretrainedConfig`]
18
- for more information.
19
-
20
-
21
- Args:
22
- vocab_size (`int`, *optional*, defaults to 150528):
23
- Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
24
- `inputs_ids` passed when calling [`~ChatGLMModel`] or
25
- [`~TFChatGLMModel`].
26
- hidden_size (`int`, *optional*, defaults to 4096):
27
- Dimension of the encoder layers and the pooler layer.
28
- num_hidden_layers (`int`, *optional*, defaults to 28):
29
- Number of hidden layers in the Transformer encoder.
30
- num_attention_heads (`int`, *optional*, defaults to 32):
31
- Number of attention heads for each attention layer in the Transformer encoder.
32
- inner_hidden_size (`int`, *optional*, defaults to 16384):
33
- Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
- max_sequence_length (`int`, *optional*, defaults to 512):
35
- The maximum sequence length that this model might ever be used with.
36
- Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
37
- layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
38
- The epsilon used by the layer normalization layers.
39
- use_cache (`bool`, *optional*, defaults to `True`):
40
- Whether the model should return the last key/values attentions (not used by all models).
41
- Example:
42
-
43
- ```python
44
- >>> from configuration_chatglm import ChatGLMConfig
45
- >>> from modeling_chatglm import ChatGLMModel
46
-
47
- >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
48
- >>> configuration = ChatGLMConfig()
49
-
50
- >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
51
- >>> model = ChatGLMModel(configuration)
52
-
53
- >>> # Accessing the model configuration
54
- >>> configuration = model.config
55
- ```
56
- """
57
- model_type = "chatglm"
58
-
59
- def __init__(
60
- self,
61
- vocab_size=150528,
62
- hidden_size=4096,
63
- num_layers=28,
64
- num_attention_heads=32,
65
- layernorm_epsilon=1e-5,
66
- use_cache=False,
67
- bos_token_id=150004,
68
- eos_token_id=150005,
69
- mask_token_id=150000,
70
- gmask_token_id=150001,
71
- pad_token_id=0,
72
- max_sequence_length=2048,
73
- inner_hidden_size=16384,
74
- position_encoding_2d=True,
75
- quantization_bit=0,
76
- pre_seq_len=None,
77
- prefix_projection=False,
78
- **kwargs
79
- ):
80
- self.num_layers = num_layers
81
- self.vocab_size = vocab_size
82
- self.hidden_size = hidden_size
83
- self.num_attention_heads = num_attention_heads
84
- self.max_sequence_length = max_sequence_length
85
- self.layernorm_epsilon = layernorm_epsilon
86
- self.inner_hidden_size = inner_hidden_size
87
- self.use_cache = use_cache
88
- self.bos_token_id = bos_token_id
89
- self.eos_token_id = eos_token_id
90
- self.pad_token_id = pad_token_id
91
- self.mask_token_id = mask_token_id
92
- self.gmask_token_id = gmask_token_id
93
- self.position_encoding_2d = position_encoding_2d
94
- self.quantization_bit = quantization_bit
95
- self.pre_seq_len = pre_seq_len
96
- self.prefix_projection = prefix_projection
97
-
98
- super().__init__(
99
- pad_token_id=pad_token_id,
100
- bos_token_id=bos_token_id,
101
- eos_token_id=eos_token_id,
102
- **kwargs
103
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/ChatGLM/tokenization_chatglm.py DELETED
@@ -1,443 +0,0 @@
1
- """Tokenization classes for ChatGLM."""
2
- from typing import List, Optional, Union
3
- import os
4
-
5
- from transformers.tokenization_utils import PreTrainedTokenizer
6
- from transformers.utils import logging, PaddingStrategy
7
- from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
8
- from typing import Dict
9
- import sentencepiece as spm
10
- import numpy as np
11
-
12
- logger = logging.get_logger(__name__)
13
-
14
- PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
15
- "THUDM/chatglm-6b": 2048,
16
- }
17
-
18
-
19
- class TextTokenizer:
20
- def __init__(self, model_path):
21
- self.sp = spm.SentencePieceProcessor()
22
- self.sp.Load(model_path)
23
- self.num_tokens = self.sp.vocab_size()
24
-
25
- def encode(self, text):
26
- return self.sp.EncodeAsIds(text)
27
-
28
- def decode(self, ids: List[int]):
29
- return self.sp.DecodeIds(ids)
30
-
31
- def tokenize(self, text):
32
- return self.sp.EncodeAsPieces(text)
33
-
34
- def convert_tokens_to_string(self, tokens):
35
- return self.sp.DecodePieces(tokens)
36
-
37
- def convert_tokens_to_ids(self, tokens):
38
- return [self.sp.PieceToId(token) for token in tokens]
39
-
40
- def convert_token_to_id(self, token):
41
- return self.sp.PieceToId(token)
42
-
43
- def convert_id_to_token(self, idx):
44
- return self.sp.IdToPiece(idx)
45
-
46
- def __len__(self):
47
- return self.num_tokens
48
-
49
-
50
- class SPTokenizer:
51
- def __init__(
52
- self,
53
- vocab_file,
54
- num_image_tokens=20000,
55
- max_blank_length=80,
56
- byte_fallback=True,
57
- ):
58
- assert vocab_file is not None
59
- self.vocab_file = vocab_file
60
- self.num_image_tokens = num_image_tokens
61
- self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
62
- self.max_blank_length = max_blank_length
63
- self.byte_fallback = byte_fallback
64
- self.text_tokenizer = TextTokenizer(vocab_file)
65
-
66
- def _get_text_tokenizer(self):
67
- return self.text_tokenizer
68
-
69
- @staticmethod
70
- def get_blank_token(length: int):
71
- assert length >= 2
72
- return f"<|blank_{length}|>"
73
-
74
- @staticmethod
75
- def get_tab_token():
76
- return f"<|tab|>"
77
-
78
- @property
79
- def num_text_tokens(self):
80
- return self.text_tokenizer.num_tokens
81
-
82
- @property
83
- def num_tokens(self):
84
- return self.num_image_tokens + self.num_text_tokens
85
-
86
- @staticmethod
87
- def _encode_whitespaces(text: str, max_len: int = 80):
88
- text = text.replace("\t", SPTokenizer.get_tab_token())
89
- for i in range(max_len, 1, -1):
90
- text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
91
- return text
92
-
93
- def _preprocess(self, text: str, linebreak=True, whitespaces=True):
94
- if linebreak:
95
- text = text.replace("\n", "<n>")
96
- if whitespaces:
97
- text = self._encode_whitespaces(text, max_len=self.max_blank_length)
98
- return text
99
-
100
- def encode(
101
- self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
102
- ) -> List[int]:
103
- """
104
- @param text: Text to encode.
105
- @param linebreak: Whether to encode newline (\n) in text.
106
- @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
107
- @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
108
- @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
109
- """
110
- text = self._preprocess(text, linebreak, whitespaces)
111
- if not add_dummy_prefix:
112
- text = "<n>" + text
113
- tmp = self._get_text_tokenizer().encode(text)
114
- tokens = [x + self.num_image_tokens for x in tmp]
115
- return tokens if add_dummy_prefix else tokens[2:]
116
-
117
- def postprocess(self, text):
118
- text = text.replace("<n>", "\n")
119
- text = text.replace(SPTokenizer.get_tab_token(), "\t")
120
- for i in range(2, self.max_blank_length + 1):
121
- text = text.replace(self.get_blank_token(i), " " * i)
122
- return text
123
-
124
- def decode(self, text_ids: List[int]) -> str:
125
- ids = [int(_id) - self.num_image_tokens for _id in text_ids]
126
- ids = [_id for _id in ids if _id >= 0]
127
- text = self._get_text_tokenizer().decode(ids)
128
- text = self.postprocess(text)
129
- return text
130
-
131
- def decode_tokens(self, tokens: List[str]) -> str:
132
- text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
133
- text = self.postprocess(text)
134
- return text
135
-
136
- def tokenize(
137
- self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
138
- ) -> List[str]:
139
- """
140
- @param text: Text to encode.
141
- @param linebreak: Whether to encode newline (\n) in text.
142
- @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
143
- @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
144
- @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
145
- """
146
- text = self._preprocess(text, linebreak, whitespaces)
147
- if not add_dummy_prefix:
148
- text = "<n>" + text
149
- tokens = self._get_text_tokenizer().tokenize(text)
150
- return tokens if add_dummy_prefix else tokens[2:]
151
-
152
- def __getitem__(self, x: Union[int, str]):
153
- if isinstance(x, int):
154
- if x < self.num_image_tokens:
155
- return "<image_{}>".format(x)
156
- else:
157
- return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
158
- elif isinstance(x, str):
159
- if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
160
- return int(x[7:-1])
161
- else:
162
- return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
163
- else:
164
- raise ValueError("The key should be str or int.")
165
-
166
-
167
- class ChatGLMTokenizer(PreTrainedTokenizer):
168
- """
169
- Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
170
-
171
- Args:
172
- vocab_file (`str`):
173
- Path to the vocabulary file.
174
- """
175
-
176
- vocab_files_names = {"vocab_file": "ice_text.model"}
177
- max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
178
- model_input_names = ["input_ids", "attention_mask", "position_ids"]
179
-
180
- def __init__(
181
- self,
182
- vocab_file,
183
- do_lower_case=False,
184
- remove_space=False,
185
- bos_token='<sop>',
186
- eos_token='<eop>',
187
- end_token='</s>',
188
- mask_token='[MASK]',
189
- gmask_token='[gMASK]',
190
- padding_side="left",
191
- pad_token="<pad>",
192
- unk_token="<unk>",
193
- num_image_tokens=20000,
194
- **kwargs
195
- ) -> None:
196
- super().__init__(
197
- do_lower_case=do_lower_case,
198
- remove_space=remove_space,
199
- padding_side=padding_side,
200
- bos_token=bos_token,
201
- eos_token=eos_token,
202
- end_token=end_token,
203
- mask_token=mask_token,
204
- gmask_token=gmask_token,
205
- pad_token=pad_token,
206
- unk_token=unk_token,
207
- num_image_tokens=num_image_tokens,
208
- **kwargs
209
- )
210
-
211
- self.do_lower_case = do_lower_case
212
- self.remove_space = remove_space
213
- self.vocab_file = vocab_file
214
-
215
- self.bos_token = bos_token
216
- self.eos_token = eos_token
217
- self.end_token = end_token
218
- self.mask_token = mask_token
219
- self.gmask_token = gmask_token
220
-
221
- self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
222
-
223
- """ Initialisation """
224
-
225
- @property
226
- def gmask_token_id(self) -> Optional[int]:
227
- if self.gmask_token is None:
228
- return None
229
- return self.convert_tokens_to_ids(self.gmask_token)
230
-
231
- @property
232
- def end_token_id(self) -> Optional[int]:
233
- """
234
- `Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
235
- set.
236
- """
237
- if self.end_token is None:
238
- return None
239
- return self.convert_tokens_to_ids(self.end_token)
240
-
241
- @property
242
- def vocab_size(self):
243
- """ Returns vocab size """
244
- return self.sp_tokenizer.num_tokens
245
-
246
- def get_vocab(self):
247
- """ Returns vocab as a dict """
248
- vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
249
- vocab.update(self.added_tokens_encoder)
250
- return vocab
251
-
252
- def preprocess_text(self, inputs):
253
- if self.remove_space:
254
- outputs = " ".join(inputs.strip().split())
255
- else:
256
- outputs = inputs
257
-
258
- if self.do_lower_case:
259
- outputs = outputs.lower()
260
-
261
- return outputs
262
-
263
- def _tokenize(self, text, **kwargs):
264
- """ Returns a tokenized string. """
265
- text = self.preprocess_text(text)
266
-
267
- seq = self.sp_tokenizer.tokenize(text)
268
-
269
- return seq
270
-
271
- def convert_tokens_to_string(self, tokens: List[str]) -> str:
272
- return self.sp_tokenizer.decode_tokens(tokens)
273
-
274
- def _decode(
275
- self,
276
- token_ids: Union[int, List[int]],
277
- **kwargs
278
- ) -> str:
279
- if isinstance(token_ids, int):
280
- token_ids = [token_ids]
281
- if len(token_ids) == 0:
282
- return ""
283
- if self.pad_token_id in token_ids: # remove pad
284
- token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
285
- return super()._decode(token_ids, **kwargs)
286
-
287
- def _convert_token_to_id(self, token):
288
- """ Converts a token (str) in an id using the vocab. """
289
- return self.sp_tokenizer[token]
290
-
291
- def _convert_id_to_token(self, index):
292
- """Converts an index (integer) in a token (str) using the vocab."""
293
- return self.sp_tokenizer[index]
294
-
295
- def save_vocabulary(self, save_directory, filename_prefix=None):
296
- """
297
- Save the vocabulary and special tokens file to a directory.
298
-
299
- Args:
300
- save_directory (`str`):
301
- The directory in which to save the vocabulary.
302
- filename_prefix (`str`, *optional*):
303
- An optional prefix to add to the named of the saved files.
304
-
305
- Returns:
306
- `Tuple(str)`: Paths to the files saved.
307
- """
308
- if os.path.isdir(save_directory):
309
- vocab_file = os.path.join(
310
- save_directory, self.vocab_files_names["vocab_file"]
311
- )
312
- else:
313
- vocab_file = save_directory
314
-
315
- with open(self.vocab_file, 'rb') as fin:
316
- proto_str = fin.read()
317
-
318
- with open(vocab_file, "wb") as writer:
319
- writer.write(proto_str)
320
-
321
- return (vocab_file,)
322
-
323
- def build_inputs_with_special_tokens(
324
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
325
- ) -> List[int]:
326
- """
327
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
328
- adding special tokens. A BERT sequence has the following format:
329
-
330
- - single sequence: `[CLS] X [SEP]`
331
- - pair of sequences: `[CLS] A [SEP] B [SEP]`
332
-
333
- Args:
334
- token_ids_0 (`List[int]`):
335
- List of IDs to which the special tokens will be added.
336
- token_ids_1 (`List[int]`, *optional*):
337
- Optional second list of IDs for sequence pairs.
338
-
339
- Returns:
340
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
341
- """
342
- gmask_id = self.sp_tokenizer[self.gmask_token]
343
- eos_id = self.sp_tokenizer[self.eos_token]
344
- token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
345
- if token_ids_1 is not None:
346
- token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
347
- return token_ids_0
348
-
349
- def _pad(
350
- self,
351
- encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
352
- max_length: Optional[int] = None,
353
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
354
- pad_to_multiple_of: Optional[int] = None,
355
- return_attention_mask: Optional[bool] = None,
356
- ) -> dict:
357
- """
358
- Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
359
-
360
- Args:
361
- encoded_inputs:
362
- Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
363
- max_length: maximum length of the returned list and optionally padding length (see below).
364
- Will truncate by taking into account the special tokens.
365
- padding_strategy: PaddingStrategy to use for padding.
366
-
367
- - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
368
- - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
369
- - PaddingStrategy.DO_NOT_PAD: Do not pad
370
- The tokenizer padding sides are defined in self.padding_side:
371
-
372
- - 'left': pads on the left of the sequences
373
- - 'right': pads on the right of the sequences
374
- pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
375
- This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
376
- `>= 7.5` (Volta).
377
- return_attention_mask:
378
- (optional) Set to False to avoid returning attention mask (default: set to model specifics)
379
- """
380
- # Load from model defaults
381
- bos_token_id = self.sp_tokenizer[self.bos_token]
382
- mask_token_id = self.sp_tokenizer[self.mask_token]
383
- gmask_token_id = self.sp_tokenizer[self.gmask_token]
384
- assert self.padding_side == "left"
385
-
386
- required_input = encoded_inputs[self.model_input_names[0]]
387
- seq_length = len(required_input)
388
-
389
- if padding_strategy == PaddingStrategy.LONGEST:
390
- max_length = len(required_input)
391
-
392
- if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
393
- max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
394
-
395
- needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
396
-
397
- # Initialize attention mask if not present.
398
- if max_length is not None:
399
- if "attention_mask" not in encoded_inputs:
400
- if bos_token_id in required_input:
401
- context_length = required_input.index(bos_token_id)
402
- else:
403
- context_length = seq_length
404
- attention_mask = np.ones((1, seq_length, seq_length))
405
- attention_mask = np.tril(attention_mask)
406
- attention_mask[:, :, :context_length] = 1
407
- attention_mask = np.bool_(attention_mask < 0.5)
408
- encoded_inputs["attention_mask"] = attention_mask
409
-
410
- if "position_ids" not in encoded_inputs:
411
- if bos_token_id in required_input:
412
- context_length = required_input.index(bos_token_id)
413
- else:
414
- context_length = seq_length
415
- position_ids = np.arange(seq_length, dtype=np.int64)
416
- mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
417
- if mask_token in required_input:
418
- mask_position = required_input.index(mask_token)
419
- position_ids[context_length:] = mask_position
420
- block_position_ids = np.concatenate(
421
- [np.zeros(context_length, dtype=np.int64),
422
- np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
423
- encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
424
-
425
- if needs_to_be_padded:
426
- difference = max_length - len(required_input)
427
-
428
- if "attention_mask" in encoded_inputs:
429
- encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
430
- pad_width=[(0, 0), (difference, 0), (difference, 0)],
431
- mode='constant', constant_values=True)
432
- if "token_type_ids" in encoded_inputs:
433
- encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
434
- "token_type_ids"
435
- ]
436
- if "special_tokens_mask" in encoded_inputs:
437
- encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
438
- if "position_ids" in encoded_inputs:
439
- encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
440
- pad_width=[(0, 0), (difference, 0)])
441
- encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
442
-
443
- return encoded_inputs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/ChatGLM/tokenizer_config.json DELETED
@@ -1,20 +0,0 @@
1
- {
2
- "name_or_path": "THUDM/chatglm-6b",
3
- "bos_token": "<sop>",
4
- "eos_token": "<eop>",
5
- "end_token": "</s>",
6
- "gmask_token": "[gMASK]",
7
- "mask_token": "[MASK]",
8
- "pad_token": "<pad>",
9
- "unk_token": "<unk>",
10
- "remove_space": false,
11
- "do_lower_case": false,
12
- "tokenizer_class": "ChatGLMTokenizer",
13
- "num_image_tokens": 0,
14
- "auto_map": {
15
- "AutoTokenizer": [
16
- "tokenization_chatglm.ChatGLMTokenizer",
17
- null
18
- ]
19
- }
20
- }