OuroborosM commited on
Commit
009c740
·
1 Parent(s): f908aec

print prompt template

Browse files
Files changed (1) hide show
  1. app.py +12 -7
app.py CHANGED
@@ -11,6 +11,7 @@ from langchain.vectorstores import Pinecone
11
  from langchain.agents import initialize_agent
12
  from langchain.agents import AgentType
13
  from langchain.agents import Tool
 
14
  from langchain.tools import BaseTool
15
  from langchain.tools import DuckDuckGoSearchRun
16
  from langchain.utilities import WikipediaAPIWrapper
@@ -74,15 +75,17 @@ chat = AzureChatOpenAI(
74
  )
75
  llm = chat
76
 
77
- llm_math = LLMMathChain(llm = llm)
78
 
79
- math_tool = Tool(
80
- name ='Calculator',
81
- func = llm_math.run,
82
- description ='Useful for when you need to answer questions about math.'
83
- )
84
 
85
- tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool]
 
 
86
 
87
  embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
88
 
@@ -104,6 +107,8 @@ agent = initialize_agent(tools, llm,
104
  verbose = True,
105
  handle_parsing_errors = True)
106
 
 
 
107
  global vectordb
108
  vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
109
  global vectordb_p
 
11
  from langchain.agents import initialize_agent
12
  from langchain.agents import AgentType
13
  from langchain.agents import Tool
14
+ from langchain.agents import load_tools
15
  from langchain.tools import BaseTool
16
  from langchain.tools import DuckDuckGoSearchRun
17
  from langchain.utilities import WikipediaAPIWrapper
 
75
  )
76
  llm = chat
77
 
78
+ # llm_math = LLMMathChain(llm = llm)
79
 
80
+ # math_tool = Tool(
81
+ # name ='Calculator',
82
+ # func = llm_math.run,
83
+ # description ='Useful for when you need to answer questions about math.'
84
+ # )
85
 
86
+ tools = [DB_Search(), duckduckgo_tool, python_tool]
87
+
88
+ tools = load_tools(["llm-math"], llm=llm)
89
 
90
  embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
91
 
 
107
  verbose = True,
108
  handle_parsing_errors = True)
109
 
110
+ print(agent.agent.llm_chain.prompt.template)
111
+
112
  global vectordb
113
  vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
114
  global vectordb_p