Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +15 -0
- app.py +52 -0
- requirements.txt +5 -0
Dockerfile
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Usa una imagen base de Python
|
| 2 |
+
FROM python:3.9
|
| 3 |
+
# Establece el directorio de trabajo
|
| 4 |
+
WORKDIR /code
|
| 5 |
+
|
| 6 |
+
# Copia los archivos necesarios al contenedor
|
| 7 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 8 |
+
RUN pip install --no-cache-dir -r /code/requirements.txt
|
| 9 |
+
|
| 10 |
+
COPY . .
|
| 11 |
+
|
| 12 |
+
RUN chmod -R 777 /code
|
| 13 |
+
|
| 14 |
+
# Comando para ejecutar la aplicaci贸n
|
| 15 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras.api.models import Sequential
|
| 2 |
+
from keras.api.layers import InputLayer, Dense
|
| 3 |
+
from fastapi import FastAPI, HTTPException
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import List
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class InputData(BaseModel):
|
| 10 |
+
data: List[float] # Lista de caracter铆sticas num茅ricas (flotantes)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
app = FastAPI()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Funci贸n para construir el modelo manualmente
|
| 17 |
+
def build_model():
|
| 18 |
+
model = Sequential(
|
| 19 |
+
[
|
| 20 |
+
InputLayer(
|
| 21 |
+
input_shape=(5,), name="dense_input"
|
| 22 |
+
), # Ajusta el tama帽o de entrada seg煤n tu modelo
|
| 23 |
+
Dense(16, activation="relu", name="dense_16_relu"),
|
| 24 |
+
Dense(1, activation="sigmoid", name="dense_1_sigmoid"),
|
| 25 |
+
]
|
| 26 |
+
)
|
| 27 |
+
model.load_weights(
|
| 28 |
+
"model.h5"
|
| 29 |
+
) # Aseg煤rate de que los nombres de las capas coincidan para que los pesos se carguen correctamente
|
| 30 |
+
model.compile(
|
| 31 |
+
loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]
|
| 32 |
+
)
|
| 33 |
+
return model
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
model = build_model() # Construir el modelo al iniciar la aplicaci贸n
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Ruta de predicci贸n
|
| 40 |
+
@app.post("/predict/")
|
| 41 |
+
async def predict(data: InputData):
|
| 42 |
+
print(f"Data: {data}")
|
| 43 |
+
global model
|
| 44 |
+
try:
|
| 45 |
+
# Convertir la lista de entrada a un array de NumPy para la predicci贸n
|
| 46 |
+
input_data = np.array(data.data).reshape(
|
| 47 |
+
1, -1
|
| 48 |
+
) # Asumiendo que la entrada debe ser de forma (1, num_features)
|
| 49 |
+
prediction = model.predict(input_data).round()
|
| 50 |
+
return {"prediction": prediction.tolist()}
|
| 51 |
+
except Exception as e:
|
| 52 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
keras
|
| 3 |
+
fastapi
|
| 4 |
+
numpy
|
| 5 |
+
pydantic
|