Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import comfy.ops | |
| from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed | |
| from comfy.ldm.modules.diffusionmodules.util import timestep_embedding | |
| from torch.utils import checkpoint | |
| from .attn_layers import Attention, CrossAttention | |
| from .poolers import AttentionPool | |
| from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop | |
| def calc_rope(x, patch_size, head_size): | |
| th = (x.shape[2] + (patch_size // 2)) // patch_size | |
| tw = (x.shape[3] + (patch_size // 2)) // patch_size | |
| base_size = 512 // 8 // patch_size | |
| start, stop = get_fill_resize_and_crop((th, tw), base_size) | |
| sub_args = [start, stop, (th, tw)] | |
| # head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads'] | |
| rope = get_2d_rotary_pos_embed(head_size, *sub_args) | |
| rope = (rope[0].to(x), rope[1].to(x)) | |
| return rope | |
| def modulate(x, shift, scale): | |
| return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| class HunYuanDiTBlock(nn.Module): | |
| """ | |
| A HunYuanDiT block with `add` conditioning. | |
| """ | |
| def __init__(self, | |
| hidden_size, | |
| c_emb_size, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| text_states_dim=1024, | |
| qk_norm=False, | |
| norm_type="layer", | |
| skip=False, | |
| attn_precision=None, | |
| dtype=None, | |
| device=None, | |
| operations=None, | |
| ): | |
| super().__init__() | |
| use_ele_affine = True | |
| if norm_type == "layer": | |
| norm_layer = operations.LayerNorm | |
| elif norm_type == "rms": | |
| norm_layer = operations.RMSNorm | |
| else: | |
| raise ValueError(f"Unknown norm_type: {norm_type}") | |
| # ========================= Self-Attention ========================= | |
| self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device) | |
| self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) | |
| # ========================= FFN ========================= | |
| self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device) | |
| mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations) | |
| # ========================= Add ========================= | |
| # Simply use add like SDXL. | |
| self.default_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device) | |
| ) | |
| # ========================= Cross-Attention ========================= | |
| self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True, | |
| qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) | |
| self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) | |
| # ========================= Skip Connection ========================= | |
| if skip: | |
| self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) | |
| self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device) | |
| else: | |
| self.skip_linear = None | |
| self.gradient_checkpointing = False | |
| def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None): | |
| # Long Skip Connection | |
| if self.skip_linear is not None: | |
| cat = torch.cat([x, skip], dim=-1) | |
| if cat.dtype != x.dtype: | |
| cat = cat.to(x.dtype) | |
| cat = self.skip_norm(cat) | |
| x = self.skip_linear(cat) | |
| # Self-Attention | |
| shift_msa = self.default_modulation(c).unsqueeze(dim=1) | |
| attn_inputs = ( | |
| self.norm1(x) + shift_msa, freq_cis_img, | |
| ) | |
| x = x + self.attn1(*attn_inputs)[0] | |
| # Cross-Attention | |
| cross_inputs = ( | |
| self.norm3(x), text_states, freq_cis_img | |
| ) | |
| x = x + self.attn2(*cross_inputs)[0] | |
| # FFN Layer | |
| mlp_inputs = self.norm2(x) | |
| x = x + self.mlp(mlp_inputs) | |
| return x | |
| def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None): | |
| if self.gradient_checkpointing and self.training: | |
| return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip) | |
| return self._forward(x, c, text_states, freq_cis_img, skip) | |
| class FinalLayer(nn.Module): | |
| """ | |
| The final layer of HunYuanDiT. | |
| """ | |
| def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None): | |
| super().__init__() | |
| self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
| self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device) | |
| ) | |
| def forward(self, x, c): | |
| shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
| x = modulate(self.norm_final(x), shift, scale) | |
| x = self.linear(x) | |
| return x | |
| class HunYuanDiT(nn.Module): | |
| """ | |
| HunYuanDiT: Diffusion model with a Transformer backbone. | |
| Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
| Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline. | |
| Parameters | |
| ---------- | |
| args: argparse.Namespace | |
| The arguments parsed by argparse. | |
| input_size: tuple | |
| The size of the input image. | |
| patch_size: int | |
| The size of the patch. | |
| in_channels: int | |
| The number of input channels. | |
| hidden_size: int | |
| The hidden size of the transformer backbone. | |
| depth: int | |
| The number of transformer blocks. | |
| num_heads: int | |
| The number of attention heads. | |
| mlp_ratio: float | |
| The ratio of the hidden size of the MLP in the transformer block. | |
| log_fn: callable | |
| The logging function. | |
| """ | |
| #@register_to_config | |
| def __init__(self, | |
| input_size: tuple = 32, | |
| patch_size: int = 2, | |
| in_channels: int = 4, | |
| hidden_size: int = 1152, | |
| depth: int = 28, | |
| num_heads: int = 16, | |
| mlp_ratio: float = 4.0, | |
| text_states_dim = 1024, | |
| text_states_dim_t5 = 2048, | |
| text_len = 77, | |
| text_len_t5 = 256, | |
| qk_norm = True,# See http://arxiv.org/abs/2302.05442 for details. | |
| size_cond = False, | |
| use_style_cond = False, | |
| learn_sigma = True, | |
| norm = "layer", | |
| log_fn: callable = print, | |
| attn_precision=None, | |
| dtype=None, | |
| device=None, | |
| operations=None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.log_fn = log_fn | |
| self.depth = depth | |
| self.learn_sigma = learn_sigma | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
| self.patch_size = patch_size | |
| self.num_heads = num_heads | |
| self.hidden_size = hidden_size | |
| self.text_states_dim = text_states_dim | |
| self.text_states_dim_t5 = text_states_dim_t5 | |
| self.text_len = text_len | |
| self.text_len_t5 = text_len_t5 | |
| self.size_cond = size_cond | |
| self.use_style_cond = use_style_cond | |
| self.norm = norm | |
| self.dtype = dtype | |
| #import pdb | |
| #pdb.set_trace() | |
| self.mlp_t5 = nn.Sequential( | |
| operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device), | |
| nn.SiLU(), | |
| operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device), | |
| ) | |
| # learnable replace | |
| self.text_embedding_padding = nn.Parameter( | |
| torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device)) | |
| # Attention pooling | |
| pooler_out_dim = 1024 | |
| self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations) | |
| # Dimension of the extra input vectors | |
| self.extra_in_dim = pooler_out_dim | |
| if self.size_cond: | |
| # Image size and crop size conditions | |
| self.extra_in_dim += 6 * 256 | |
| if self.use_style_cond: | |
| # Here we use a default learned embedder layer for future extension. | |
| self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device) | |
| self.extra_in_dim += hidden_size | |
| # Text embedding for `add` | |
| self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations) | |
| self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations) | |
| self.extra_embedder = nn.Sequential( | |
| operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device), | |
| nn.SiLU(), | |
| operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device), | |
| ) | |
| # HUnYuanDiT Blocks | |
| self.blocks = nn.ModuleList([ | |
| HunYuanDiTBlock(hidden_size=hidden_size, | |
| c_emb_size=hidden_size, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| text_states_dim=self.text_states_dim, | |
| qk_norm=qk_norm, | |
| norm_type=self.norm, | |
| skip=layer > depth // 2, | |
| attn_precision=attn_precision, | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| for layer in range(depth) | |
| ]) | |
| self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) | |
| self.unpatchify_channels = self.out_channels | |
| def forward(self, | |
| x, | |
| t, | |
| context,#encoder_hidden_states=None, | |
| text_embedding_mask=None, | |
| encoder_hidden_states_t5=None, | |
| text_embedding_mask_t5=None, | |
| image_meta_size=None, | |
| style=None, | |
| return_dict=False, | |
| control=None, | |
| transformer_options={}, | |
| ): | |
| """ | |
| Forward pass of the encoder. | |
| Parameters | |
| ---------- | |
| x: torch.Tensor | |
| (B, D, H, W) | |
| t: torch.Tensor | |
| (B) | |
| encoder_hidden_states: torch.Tensor | |
| CLIP text embedding, (B, L_clip, D) | |
| text_embedding_mask: torch.Tensor | |
| CLIP text embedding mask, (B, L_clip) | |
| encoder_hidden_states_t5: torch.Tensor | |
| T5 text embedding, (B, L_t5, D) | |
| text_embedding_mask_t5: torch.Tensor | |
| T5 text embedding mask, (B, L_t5) | |
| image_meta_size: torch.Tensor | |
| (B, 6) | |
| style: torch.Tensor | |
| (B) | |
| cos_cis_img: torch.Tensor | |
| sin_cis_img: torch.Tensor | |
| return_dict: bool | |
| Whether to return a dictionary. | |
| """ | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| encoder_hidden_states = context | |
| text_states = encoder_hidden_states # 2,77,1024 | |
| text_states_t5 = encoder_hidden_states_t5 # 2,256,2048 | |
| text_states_mask = text_embedding_mask.bool() # 2,77 | |
| text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256 | |
| b_t5, l_t5, c_t5 = text_states_t5.shape | |
| text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1) | |
| padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states) | |
| text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len]) | |
| text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:]) | |
| text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024 | |
| # clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1) | |
| _, _, oh, ow = x.shape | |
| th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size | |
| # Get image RoPE embedding according to `reso`lution. | |
| freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) #(cos_cis_img, sin_cis_img) | |
| # ========================= Build time and image embedding ========================= | |
| t = self.t_embedder(t, dtype=x.dtype) | |
| x = self.x_embedder(x) | |
| # ========================= Concatenate all extra vectors ========================= | |
| # Build text tokens with pooling | |
| extra_vec = self.pooler(encoder_hidden_states_t5) | |
| # Build image meta size tokens if applicable | |
| if self.size_cond: | |
| image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype) # [B * 6, 256] | |
| image_meta_size = image_meta_size.view(-1, 6 * 256) | |
| extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256] | |
| # Build style tokens | |
| if self.use_style_cond: | |
| if style is None: | |
| style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int) | |
| style_embedding = self.style_embedder(style, out_dtype=x.dtype) | |
| extra_vec = torch.cat([extra_vec, style_embedding], dim=1) | |
| # Concatenate all extra vectors | |
| c = t + self.extra_embedder(extra_vec) # [B, D] | |
| blocks_replace = patches_replace.get("dit", {}) | |
| controls = None | |
| if control: | |
| controls = control.get("output", None) | |
| # ========================= Forward pass through HunYuanDiT blocks ========================= | |
| skips = [] | |
| for layer, block in enumerate(self.blocks): | |
| if layer > self.depth // 2: | |
| if controls is not None: | |
| skip = skips.pop() + controls.pop().to(dtype=x.dtype) | |
| else: | |
| skip = skips.pop() | |
| else: | |
| skip = None | |
| if ("double_block", layer) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], args["vec"], args["txt"], args["pe"], args["skip"]) | |
| return out | |
| out = blocks_replace[("double_block", layer)]({"img": x, "txt": text_states, "vec": c, "pe": freqs_cis_img, "skip": skip}, {"original_block": block_wrap}) | |
| x = out["img"] | |
| else: | |
| x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D) | |
| if layer < (self.depth // 2 - 1): | |
| skips.append(x) | |
| if controls is not None and len(controls) != 0: | |
| raise ValueError("The number of controls is not equal to the number of skip connections.") | |
| # ========================= Final layer ========================= | |
| x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x, th, tw) # (N, out_channels, H, W) | |
| if return_dict: | |
| return {'x': x} | |
| if self.learn_sigma: | |
| return x[:,:self.out_channels // 2,:oh,:ow] | |
| return x[:,:,:oh,:ow] | |
| def unpatchify(self, x, h, w): | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| c = self.unpatchify_channels | |
| p = self.x_embedder.patch_size[0] | |
| # h = w = int(x.shape[1] ** 0.5) | |
| assert h * w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
| x = torch.einsum('nhwpqc->nchpwq', x) | |
| imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
| return imgs | |