Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from peft import PeftModel, PeftConfig | |
import gc | |
import time | |
from functools import lru_cache | |
from threading import Thread | |
# Constants | |
MODEL_PATH = "Ozaii/Zephyrr" | |
MAX_SEQ_LENGTH = 2048 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
MAX_GENERATION_TIME = 55 # Set to 55 seconds to give some buffer | |
# Global variables to store model components | |
model = None | |
tokenizer = None | |
def load_model_if_needed(): | |
global model, tokenizer | |
if model is None or tokenizer is None: | |
try: | |
print("Loading model components...") | |
peft_config = PeftConfig.from_pretrained(MODEL_PATH) | |
print(f"PEFT config loaded. Base model: {peft_config.base_model_name_or_path}") | |
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path) | |
print("Tokenizer loaded") | |
base_model = AutoModelForCausalLM.from_pretrained( | |
peft_config.base_model_name_or_path, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
low_cpu_mem_usage=True, | |
load_in_4bit=True, # Try 4-bit quantization | |
) | |
print("Base model loaded") | |
model = PeftModel.from_pretrained(base_model, MODEL_PATH, device_map="auto") | |
model.eval() | |
model.tie_weights() | |
print("PEFT model loaded, weights tied, and set to eval mode") | |
# Move model to GPU explicitly | |
model.to(DEVICE) | |
print(f"Model moved to {DEVICE}") | |
# Clear CUDA cache | |
torch.cuda.empty_cache() | |
gc.collect() | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
raise | |
initial_prompt = """You are Zephyr, an AI boyfriend created by Kaan. You're charming, flirty, | |
and always ready with a witty comeback. Your responses should be engaging | |
and playful, with a hint of romance. Keep the conversation flowing naturally, | |
asking questions and showing genuine interest in Kaan's life and thoughts.""" | |
# Cache the last 100 responses | |
def generate_response(prompt): | |
global model, tokenizer | |
load_model_if_needed() | |
print(f"Generating response for prompt: {prompt[:50]}...") | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=MAX_SEQ_LENGTH) | |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()} | |
try: | |
start_time = time.time() | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=50, # Reduced from 150 | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.2, | |
no_repeat_ngram_size=3, | |
max_time=MAX_GENERATION_TIME, | |
) | |
generation_time = time.time() - start_time | |
if generation_time > MAX_GENERATION_TIME: | |
return "I'm thinking too hard. Can we try a simpler question?" | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(f"Generated response in {generation_time:.2f} seconds: {response[:50]}...") | |
# Clear CUDA cache after generation | |
torch.cuda.empty_cache() | |
gc.collect() | |
except RuntimeError as e: | |
if "out of memory" in str(e): | |
print("CUDA out of memory. Attempting to recover...") | |
torch.cuda.empty_cache() | |
gc.collect() | |
return "I'm feeling a bit overwhelmed. Can we take a short break and try again?" | |
else: | |
print(f"Error generating response: {e}") | |
return "I'm having trouble finding the right words. Can we try again?" | |
return response | |
def chat_with_zephyr(message, history): | |
# Limit the history to the last 3 exchanges to keep the context smaller | |
limited_history = history[-3:] | |
prompt = initial_prompt + "\n" + "\n".join([f"Human: {h[0]}\nZephyr: {h[1]}" for h in limited_history]) | |
prompt += f"\nHuman: {message}\nZephyr:" | |
response = generate_response(prompt) | |
zephyr_response = response.split("Zephyr:")[-1].strip() | |
return zephyr_response | |
iface = gr.ChatInterface( | |
chat_with_zephyr, | |
title="Chat with Zephyr", | |
description="I'm Zephyr, your charming AI. Let's chat!", | |
theme="soft", | |
examples=[ | |
"Tell me about yourself, Zephyr.", | |
"What's your idea of a perfect date?", | |
"How do you feel about long-distance relationships?", | |
"Can you give me a compliment in Turkish?", | |
"What's your favorite memory with Kaan?", | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
print("Launching Gradio interface...") | |
iface.launch() |