Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,766 Bytes
7890545 1fcbe69 7890545 1fcbe69 7890545 1fcbe69 7890545 1fcbe69 7890545 1fcbe69 7890545 1981120 1fcbe69 7890545 1fcbe69 7890545 1fcbe69 7890545 1fcbe69 3a4cca7 7890545 1fcbe69 7890545 a18baf3 7890545 1fcbe69 7890545 3a4cca7 1fcbe69 3a4cca7 1fcbe69 7890545 1fcbe69 7890545 1fcbe69 7890545 3a4cca7 5e46a89 1fcbe69 5e46a89 1fcbe69 5e46a89 7890545 5e46a89 7890545 1fcbe69 7890545 5e46a89 1fcbe69 5e46a89 7890545 1981120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, ControlNetUnionModel, DiffusionPipeline, TCDScheduler
def callback_cfg_cutoff(pipeline, step_index, timestep, callback_kwargs):
if step_index == int(pipeline.num_timesteps * 0.2):
prompt_embeds = callback_kwargs["prompt_embeds"]
prompt_embeds = prompt_embeds[-1:]
add_text_embeds = callback_kwargs["add_text_embeds"]
add_text_embeds = add_text_embeds[-1:]
add_time_ids = callback_kwargs["add_time_ids"]
add_time_ids = add_time_ids[-1:]
control_image = callback_kwargs["control_image"]
control_image[0] = control_image[0][-1:]
control_type = callback_kwargs["control_type"]
control_type = control_type[-1:]
pipeline._guidance_scale = 0.0
callback_kwargs["prompt_embeds"] = prompt_embeds
callback_kwargs["add_text_embeds"] = add_text_embeds
callback_kwargs["add_time_ids"] = add_time_ids
callback_kwargs["control_image"] = control_image
callback_kwargs["control_type"] = control_type
return callback_kwargs
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
controlnet_model = ControlNetUnionModel.from_pretrained(
"OzzyGT/controlnet-union-promax-sdxl-1.0", variant="fp16", torch_dtype=torch.float16
)
controlnet_model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=controlnet_model,
custom_pipeline="OzzyGT/custom_sdxl_cnet_union",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
@spaces.GPU(duration=24)
def fill_image(prompt, negative_prompt, image, model_selection, paste_back):
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, device="cuda", negative_prompt=negative_prompt)
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
control_image=[cnet_image],
controlnet_conditioning_scale=[1.0],
control_mode=[7],
num_inference_steps=8,
guidance_scale=1.5,
callback_on_step_end=callback_cfg_cutoff,
callback_on_step_end_tensor_inputs=[
"prompt_embeds",
"add_text_embeds",
"add_time_ids",
"control_image",
"control_type",
],
).images[0]
if paste_back:
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
else:
cnet_image = image
yield source, cnet_image
def clear_result():
return gr.update(value=None)
title = """<h2 align="center">Diffusers Fast Inpaint</h2>
<div align="center">Draw the mask over the subject you want to erase or change and write what you want to inpaint it with.</div>
"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
lines=1,
)
with gr.Column():
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative Prompt",
lines=1,
)
with gr.Row():
with gr.Column():
run_button = gr.Button("Generate")
with gr.Column():
paste_back = gr.Checkbox(True, label="Paste back original")
with gr.Row():
input_image = gr.ImageMask(
type="pil",
label="Input Image",
crop_size=(1024, 1024),
canvas_size=(1024, 1024),
layers=False,
height=512,
)
result = gr.ImageSlider(
interactive=False,
label="Generated Image",
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
model_selection = gr.Dropdown(choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model")
def use_output_as_input(output_image):
return gr.update(value=output_image[1])
use_as_input_button.click(fn=use_output_as_input, inputs=[result], outputs=[input_image])
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, negative_prompt, input_image, model_selection, paste_back],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, negative_prompt, input_image, model_selection, paste_back],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
demo.queue(max_size=12).launch(share=False)
|