File size: 5,766 Bytes
7890545
 
 
 
1fcbe69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7890545
 
 
 
 
1fcbe69
 
7890545
1fcbe69
 
7890545
1fcbe69
7890545
 
 
1fcbe69
 
7890545
 
 
 
 
1981120
1fcbe69
7890545
 
 
 
 
1fcbe69
7890545
 
 
 
 
 
 
 
 
1fcbe69
7890545
 
 
 
1fcbe69
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4cca7
 
 
 
 
 
7890545
 
 
 
 
 
 
 
1fcbe69
7890545
 
 
a18baf3
7890545
 
 
 
 
1fcbe69
7890545
 
3a4cca7
1fcbe69
 
 
 
3a4cca7
1fcbe69
 
 
 
 
 
7890545
 
 
1fcbe69
 
 
 
 
 
7890545
 
1fcbe69
7890545
 
 
 
3a4cca7
5e46a89
1fcbe69
 
5e46a89
 
 
1fcbe69
5e46a89
7890545
 
 
 
5e46a89
 
 
 
7890545
 
1fcbe69
7890545
5e46a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fcbe69
5e46a89
 
 
 
 
7890545
 
 
1981120
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import spaces
import torch

from diffusers import AutoencoderKL, ControlNetUnionModel, DiffusionPipeline, TCDScheduler


def callback_cfg_cutoff(pipeline, step_index, timestep, callback_kwargs):
    if step_index == int(pipeline.num_timesteps * 0.2):
        prompt_embeds = callback_kwargs["prompt_embeds"]
        prompt_embeds = prompt_embeds[-1:]

        add_text_embeds = callback_kwargs["add_text_embeds"]
        add_text_embeds = add_text_embeds[-1:]

        add_time_ids = callback_kwargs["add_time_ids"]
        add_time_ids = add_time_ids[-1:]

        control_image = callback_kwargs["control_image"]
        control_image[0] = control_image[0][-1:]

        control_type = callback_kwargs["control_type"]
        control_type = control_type[-1:]

        pipeline._guidance_scale = 0.0
        callback_kwargs["prompt_embeds"] = prompt_embeds
        callback_kwargs["add_text_embeds"] = add_text_embeds
        callback_kwargs["add_time_ids"] = add_time_ids
        callback_kwargs["control_image"] = control_image
        callback_kwargs["control_type"] = control_type

    return callback_kwargs


MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}

controlnet_model = ControlNetUnionModel.from_pretrained(
    "OzzyGT/controlnet-union-promax-sdxl-1.0", variant="fp16", torch_dtype=torch.float16
)
controlnet_model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")

pipe = DiffusionPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=controlnet_model,
    custom_pipeline="OzzyGT/custom_sdxl_cnet_union",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)


@spaces.GPU(duration=24)
def fill_image(prompt, negative_prompt, image, model_selection, paste_back):
    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(prompt, device="cuda", negative_prompt=negative_prompt)

    source = image["background"]
    mask = image["layers"][0]

    alpha_channel = mask.split()[3]
    binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
    cnet_image = source.copy()
    cnet_image.paste(0, (0, 0), binary_mask)

    image = pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        control_image=[cnet_image],
        controlnet_conditioning_scale=[1.0],
        control_mode=[7],
        num_inference_steps=8,
        guidance_scale=1.5,
        callback_on_step_end=callback_cfg_cutoff,
        callback_on_step_end_tensor_inputs=[
            "prompt_embeds",
            "add_text_embeds",
            "add_time_ids",
            "control_image",
            "control_type",
        ],
    ).images[0]

    if paste_back:
        image = image.convert("RGBA")
        cnet_image.paste(image, (0, 0), binary_mask)
    else:
        cnet_image = image

    yield source, cnet_image


def clear_result():
    return gr.update(value=None)


title = """<h2 align="center">Diffusers Fast Inpaint</h2>
<div align="center">Draw the mask over the subject you want to erase or change and write what you want to inpaint it with.</div>
"""

with gr.Blocks() as demo:
    gr.HTML(title)
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
                lines=1,
            )
        with gr.Column():
            with gr.Row():
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    lines=1,
                )

    with gr.Row():
        with gr.Column():
            run_button = gr.Button("Generate")

        with gr.Column():
            paste_back = gr.Checkbox(True, label="Paste back original")

    with gr.Row():
        input_image = gr.ImageMask(
            type="pil",
            label="Input Image",
            crop_size=(1024, 1024),
            canvas_size=(1024, 1024),
            layers=False,
            height=512,
        )

        result = gr.ImageSlider(
            interactive=False,
            label="Generated Image",
        )

    use_as_input_button = gr.Button("Use as Input Image", visible=False)

    model_selection = gr.Dropdown(choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model")

    def use_output_as_input(output_image):
        return gr.update(value=output_image[1])

    use_as_input_button.click(fn=use_output_as_input, inputs=[result], outputs=[input_image])

    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=False),
        inputs=None,
        outputs=use_as_input_button,
    ).then(
        fn=fill_image,
        inputs=[prompt, negative_prompt, input_image, model_selection, paste_back],
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

    prompt.submit(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=False),
        inputs=None,
        outputs=use_as_input_button,
    ).then(
        fn=fill_image,
        inputs=[prompt, negative_prompt, input_image, model_selection, paste_back],
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )


demo.queue(max_size=12).launch(share=False)