File size: 12,755 Bytes
fc90e17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import os
from typing import Callable
import torch
import torch.nn as nn
import torch
import torch.nn as nn
from typing import Callable, Tuple, Union, Tuple, Union, Any
HOME = os.environ["HOME"].rstrip("/")
print('HOME', HOME)
def import_abspy(name="models", path="classification/"):
import sys
import importlib
path = os.path.abspath(path)
print(path)
assert os.path.isdir(path)
sys.path.insert(0, path)
module = importlib.import_module(name)
sys.path.pop(0)
return module
def print_jit_input_names(inputs):
print("input params: ", end=" ", flush=True)
try:
for i in range(10):
print(inputs[i].debugName(), end=" ", flush=True)
except Exception as e:
pass
print("", flush=True)
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
"""
u: r(B D L)
delta: r(B D L)
A: r(D N)
B: r(B N L)
C: r(B N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
ignores:
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu]
"""
import numpy as np
# fvcore.nn.jit_handles
def get_flops_einsum(input_shapes, equation):
np_arrs = [np.zeros(s) for s in input_shapes]
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
for line in optim.split("\n"):
if "optimized flop" in line.lower():
# divided by 2 because we count MAC (multiply-add counted as one flop)
flop = float(np.floor(float(line.split(":")[-1]) / 2))
return flop
assert not with_complex
flops = 0 # below code flops = 0
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
if with_Group:
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
else:
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
in_for_flops = B * D * N
if with_Group:
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
else:
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
flops += L * in_for_flops
if with_D:
flops += B * D * L
if with_Z:
flops += B * D * L
return flops
def flops_selective_scan_fn(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_complex=False):
assert not with_complex
# https://github.com/state-spaces/mamba/issues/110
flops = 9 * B * L * D * N
if with_D:
flops += B * D * L
if with_Z:
flops += B * D * L
return flops
def selective_scan_flop_jit(inputs, outputs, backend="prefixsum", verbose=True):
if verbose:
print_jit_input_names(inputs)
flops_fn = flops_selective_scan_ref if backend == "naive" else flops_selective_scan_fn
B, D, L = inputs[0].type().sizes()
N = inputs[2].type().sizes()[1]
flops = flops_fn(B=B, L=L, D=D, N=N, with_D=True, with_Z=False)
return flops
# used for print flops
class FLOPs:
@staticmethod
def register_supported_ops():
#build = import_abspy("models", os.path.join(os.path.dirname(os.path.abspath(__file__)), "../classification/"))
# selective_scan_flop_jit: Callable = selective_scan_flop_jit
# flops_selective_scan_fn: Callable = build.vmamba.flops_selective_scan_fn
# flops_selective_scan_ref: Callable = build.vmamba.flops_selective_scan_ref
supported_ops = {
"aten::gelu": None, # as relu is in _IGNORED_OPS
"aten::silu": None, # as relu is in _IGNORED_OPS
"aten::neg": None, # as relu is in _IGNORED_OPS
"aten::exp": None, # as relu is in _IGNORED_OPS
"aten::flip": None, # as permute is in _IGNORED_OPS
"prim::PythonOp.SelectiveScanFn": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanMamba": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanOflex": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanCore": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScan": selective_scan_flop_jit, # latter
"prim::PythonOp.SelectiveScanCuda": selective_scan_flop_jit, # latter
# "aten::scaled_dot_product_attention": ...
}
return supported_ops
@staticmethod
def check_operations(model: nn.Module, inputs=None, input_shape=(3, 224, 224)):
from fvcore.nn.jit_analysis import _get_scoped_trace_graph, _named_modules_with_dup, Counter, JitModelAnalysis
if inputs is None:
assert input_shape is not None
if len(input_shape) == 1:
input_shape = (1, 3, input_shape[0], input_shape[0])
elif len(input_shape) == 2:
input_shape = (1, 3, *input_shape)
elif len(input_shape) == 3:
input_shape = (1, *input_shape)
else:
assert len(input_shape) == 4
inputs = (torch.randn(input_shape).to(next(model.parameters()).device),)
model.eval()
flop_counter = JitModelAnalysis(model, inputs)
flop_counter._ignored_ops = set()
flop_counter._op_handles = dict()
assert flop_counter.total() == 0 # make sure no operations supported
print(flop_counter.unsupported_ops(), flush=True)
print(f"supported ops {flop_counter._op_handles}; ignore ops {flop_counter._ignored_ops};", flush=True)
@classmethod
def fvcore_flop_count(cls, model: nn.Module, inputs=None, input_shape=(3, 224, 224), show_table=False,
show_arch=False, verbose=True):
supported_ops = cls.register_supported_ops()
from fvcore.nn.parameter_count import parameter_count as fvcore_parameter_count
from fvcore.nn.flop_count import flop_count, FlopCountAnalysis, _DEFAULT_SUPPORTED_OPS
from fvcore.nn.print_model_statistics import flop_count_str, flop_count_table
from fvcore.nn.jit_analysis import _IGNORED_OPS
from fvcore.nn.jit_handles import get_shape, addmm_flop_jit
if inputs is None:
assert input_shape is not None
if len(input_shape) == 1:
input_shape = (1, 3, input_shape[0], input_shape[0])
elif len(input_shape) == 2:
input_shape = (1, 3, *input_shape)
elif len(input_shape) == 3:
input_shape = (1, *input_shape)
else:
assert len(input_shape) == 4
inputs = (torch.randn(input_shape).to(next(model.parameters()).device),)
model.eval()
print("model Prepared")
Gflops, unsupported = flop_count(model=model, inputs=inputs, supported_ops=supported_ops)
print("flop_count Done")
flops_table = flop_count_table(
flops=FlopCountAnalysis(model, inputs).set_op_handle(**supported_ops),
max_depth=100,
activations=None,
show_param_shapes=True,
)
flops_str = flop_count_str(
flops=FlopCountAnalysis(model, inputs).set_op_handle(**supported_ops),
activations=None,
)
if show_arch:
print(flops_str)
if show_table:
print(flops_table)
params = fvcore_parameter_count(model)[""]
flops = sum(Gflops.values())
if verbose:
print(Gflops.items())
print("GFlops: ", flops, "Params: ", params, flush=True)
return params, flops
# equals with fvcore_flop_count
@classmethod
def mmengine_flop_count(cls, model: nn.Module = None, input_shape=(3, 224, 224), show_table=False, show_arch=False,
_get_model_complexity_info=False):
supported_ops = cls.register_supported_ops()
from mmengine.analysis.print_helper import is_tuple_of, FlopAnalyzer, ActivationAnalyzer, parameter_count, \
_format_size, complexity_stats_table, complexity_stats_str
from mmengine.analysis.jit_analysis import _IGNORED_OPS
from mmengine.analysis.complexity_analysis import _DEFAULT_SUPPORTED_FLOP_OPS, _DEFAULT_SUPPORTED_ACT_OPS
from mmengine.analysis import get_model_complexity_info as mm_get_model_complexity_info
# modified from mmengine.analysis
def get_model_complexity_info(
model: nn.Module,
input_shape: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...],
None] = None,
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], Tuple[Any, ...],
None] = None,
show_table: bool = True,
show_arch: bool = True,
):
if input_shape is None and inputs is None:
raise ValueError('One of "input_shape" and "inputs" should be set.')
elif input_shape is not None and inputs is not None:
raise ValueError('"input_shape" and "inputs" cannot be both set.')
if inputs is None:
device = next(model.parameters()).device
if is_tuple_of(input_shape, int): # tuple of int, construct one tensor
inputs = (torch.randn(1, *input_shape).to(device),)
elif is_tuple_of(input_shape, tuple) and all([
is_tuple_of(one_input_shape, int)
for one_input_shape in input_shape # type: ignore
]): # tuple of tuple of int, construct multiple tensors
inputs = tuple([
torch.randn(1, *one_input_shape).to(device)
for one_input_shape in input_shape # type: ignore
])
else:
raise ValueError(
'"input_shape" should be either a `tuple of int` (to construct'
'one input tensor) or a `tuple of tuple of int` (to construct'
'multiple input tensors).')
flop_handler = FlopAnalyzer(model, inputs).set_op_handle(**supported_ops)
# activation_handler = ActivationAnalyzer(model, inputs)
flops = flop_handler.total()
# activations = activation_handler.total()
params = parameter_count(model)['']
flops_str = _format_size(flops)
# activations_str = _format_size(activations)
params_str = _format_size(params)
if show_table:
complexity_table = complexity_stats_table(
flops=flop_handler,
# activations=activation_handler,
show_param_shapes=True,
)
complexity_table = '\n' + complexity_table
else:
complexity_table = ''
if show_arch:
complexity_arch = complexity_stats_str(
flops=flop_handler,
# activations=activation_handler,
)
complexity_arch = '\n' + complexity_arch
else:
complexity_arch = ''
return {
'flops': flops,
'flops_str': flops_str,
# 'activations': activations,
# 'activations_str': activations_str,
'params': params,
'params_str': params_str,
'out_table': complexity_table,
'out_arch': complexity_arch
}
if _get_model_complexity_info:
return get_model_complexity_info
model.eval()
analysis_results = get_model_complexity_info(
model,
input_shape,
show_table=show_table,
show_arch=show_arch,
)
flops = analysis_results['flops_str']
params = analysis_results['params_str']
# activations = analysis_results['activations_str']
out_table = analysis_results['out_table']
out_arch = analysis_results['out_arch']
if show_arch:
print(out_arch)
if show_table:
print(out_table)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\t'
f'Flops: {flops}\tParams: {params}\t'
# f'Activation: {activations}\n{split_line}'
, flush=True)
# print('!!!Only the backbone network is counted in FLOPs analysis.')
# print('!!!Please be cautious if you use the results in papers. '
# 'You may need to check if all ops are supported and verify that the '
# 'flops computation is correct.') |