|
import torch |
|
import sys |
|
import os |
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
parent_dir = os.path.abspath(os.path.join(current_dir, '..')) |
|
sys.path.append(parent_dir) |
|
from model_zoo.mair import buildMaIR_Small, buildMaIR_Tiny, buildMaIR_SR |
|
from model_zoo.mairu import buildMaIRU, buildMaIRU_motiondeblur |
|
|
|
from analysis.utils_fvcore import FLOPs |
|
fvcore_flop_count = FLOPs.fvcore_flop_count |
|
|
|
def get_parameter_number(model): |
|
total_num = sum(p.numel() for p in model.parameters()) |
|
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
return {'Total': total_num/1e6, 'Trainable': trainable_num/1e6} |
|
|
|
if __name__ == '__main__': |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
task = 'lightSR_S_x2' |
|
|
|
if task.startswith('SR') or task.startswith('lightSR'): |
|
H=720 |
|
W=1280 |
|
if task.endswith('x2'): |
|
scale=2 |
|
elif task.endswith('x3'): |
|
scale=3 |
|
elif task.endswith('x4'): |
|
scale=4 |
|
if task.startswith('SR'): |
|
init_model = buildMaIR_SR(upscale=scale).to(device) |
|
elif task.startswith('lightSR_S'): |
|
init_model = buildMaIR_Small(upscale=scale).to(device) |
|
elif task.startswith('lightSR_T'): |
|
init_model = buildMaIR_Tiny(upscale=scale).to(device) |
|
elif task.startswith('md'): |
|
H=128 |
|
W=128 |
|
scale=1 |
|
init_model = buildMaIRU_motiondeblur().to(device) |
|
elif task.startswith('dh'): |
|
H=256 |
|
W=256 |
|
scale=1 |
|
init_model = buildMaIRU().to(device) |
|
|
|
print(get_parameter_number(init_model)) |
|
with torch.no_grad(): |
|
FLOPs.fvcore_flop_count(init_model, input_shape=(3, H//scale,W//scale)) |
|
|