|
import logging |
|
import torch |
|
from os import path as osp |
|
import sys |
|
|
|
sys.path.append('/xlearning/boyun/codes/MaIR') |
|
from basicsr.data import build_dataloader, build_dataset |
|
from basicsr.models import build_model |
|
from basicsr.utils import get_root_logger, get_time_str, make_exp_dirs |
|
from basicsr.utils.options import dict2str, parse_options |
|
|
|
|
|
def test_pipeline(root_path): |
|
|
|
opt, _ = parse_options(root_path, is_train=False) |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
|
|
|
|
make_exp_dirs(opt) |
|
log_file = osp.join(opt['path']['log'], f"test_{opt['name']}_{get_time_str()}.log") |
|
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) |
|
logger.info(dict2str(opt)) |
|
|
|
|
|
test_loaders = [] |
|
for _, dataset_opt in sorted(opt['datasets'].items()): |
|
test_set = build_dataset(dataset_opt) |
|
test_loader = build_dataloader( |
|
test_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed']) |
|
logger.info(f"Number of test images in {dataset_opt['name']}: {len(test_set)}") |
|
test_loaders.append(test_loader) |
|
|
|
for i in range(opt['models']['models_num']): |
|
model_idx = opt['models']['models_start'] + opt['models']['models_step'] * i |
|
logger.info(f"Model of {model_idx} steps") |
|
|
|
opt['path']['pretrain_network_g'] = opt['models']['model_root'] + str(model_idx) + '.pth' |
|
model = build_model(opt) |
|
|
|
for test_loader in test_loaders: |
|
test_set_name = test_loader.dataset.opt['name'] |
|
logger.info(f'Testing {test_set_name}...') |
|
model.validation(test_loader, current_iter=opt['name'], tb_logger=None, save_img=opt['val']['save_img']) |
|
|
|
|
|
if __name__ == '__main__': |
|
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) |
|
test_pipeline(root_path) |
|
|